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Problem presentation

In the microarray framework researchers often are interested in the comparison
of two or more similar experiments, which involve different
treatment/exposures, tissues, or species. The aim is finding some common
denominators between these experiments in the form of a maximal list of
genes that are differentially expressed in both (all) the experiments and from
which to start further investigations.
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of two or more similar experiments, which involve different
treatment/exposures, tissues, or species. The aim is finding some common
denominators between these experiments in the form of a maximal list of
genes that are differentially expressed in both (all) the experiments and from
which to start further investigations.

Ideally, such a problem should involve the joint re-analysis of the two (all)
experiments, but it is not always easily feasible (e.g different platforms), and
in any case computationally demanding.

Alternatively, a natural approach is to consider the measures of differential
expression for the two (all) experiments and compute the intersection of the
lists. However, some of the genes in the maximal intersection list can be due
to chance.
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Outline of the work

• We propose a permutation based test for assessing whether the size of
the common list is higher than expected by chance under the hypothesis
of independence of the measures of differential expression.
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Outline of the work

• We propose a permutation based test for assessing whether the size of
the common list is higher than expected by chance under the hypothesis
of independence of the measures of differential expression.

• We present some limitations of this approach and use a Bayesian model
to overcome the problem.

• Some applications are shown, both on simulated and on real data.
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List structure

Suppose we have two experiments, each reporting a measure (e.g. p value) of
differential expression on a probability scale:

Experiment A Experiment B

Small p value =⇒ MOST differentially expressed pA1 pB1

pA2 pB2

. . . . . .

p value nearer 1 =⇒ NOT differentially expressed pAn pBn

If we simply consider a cut off on the measure of differential expression and
count the number of differentially expressed genes in common, we do not take
into account the number of genes in common by chance.
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2 × 2 table

For each threshold q:

Exp B

DE DE

Exp A DE O11(q) O1+(q) − O11(q) O1+(q)

DE O+1(q) − O11(q) n − O+1(q) − O1+(q) + O11(q) n − O1+(q)

O+1(q) n − O+1(q) n

The number of genes in common by chance is calculated as:

E(O11(q) | H0) = O1+(q)×O+1(q)
n

The number of genes observed in common is O11(q)
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Stone’s test

The idea comes from Stone (1988), who proposed a test for investigating the
excess environmental risks around putative sources.
He partitions the area of interest in N sub-areas and for each sub-area he
calculates the number of cases of a disease (Oi) and the number of expected
cases (Ei) using some reference population.
Ordering the sub-areas on the basis of their distance from the source he
calculates the ratio of the partial sum of the number of observed cases to the
partial sum of the number of expected, by increasing distance from the source:

T (q∗) = max1≤q≤N

Σq
i=1Oi

Σq
i=1Ei

This is relating to the radius around the putative source within which the
observed relative risk is maximized.

– p. 6



Ratio

We propose to calculate the maximum of the observed to expected ratio:

T (q∗) = maxqT (q) =
O11(q∗)

E(O11(q∗) | H0)
where T (q) =

O11(q)

E(O11(q) | H0)

It is the maximal deviation from the underneath independence model.

The list of these O11(q∗) genes can be extracted for further biological investigations.
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Modelling O11(q)

Given a threshold q and fixed margins, O11(q) has a hypergeometric
distribution:

O11(q) ∼ Hyper(O1+(q), O+1(q), n)

P (O11(q) | O1+(q), O+1(q), n, H0) =

(

O1+(q)

O11(q)

)(

n − O1+(q)

O+1(q) − O11(q)

)

(

n

O1+(q)

)

hence the distribution of the ratio T (q) is:

T (q) ∝ Hyper(O1+(q), O+1(q), n)

However, the distribution of T (q∗) is not easily obtained, since the tables are
not independent (nested in each other).
We take advantage of the empirical distribution for T (q∗) obtained through
simulation.
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Permutation test

We perform a permutation test of T (q∗) under the null hypothesis of
independence between the two experiments.

In this test, the measures of probability of one list are randomly permuted

several times, while the ones for the other list are keeping fixed. For the sth

permutation (s = 1, . . . , S):

Experiment A Experiment B

pA1 pBs(1)

pA2 pBs(2)

. . . . . .

pAn pBs(n)

Any relationship between the two lists is destroyed.

At each permutation, a statistic T (q∗)s is calculated
and the sampling permutation distribution
under the condition of independence is built.

An empirical p value is used to evaluate
how the observed T (q∗) is far from
the null distribution.

T

1.0 1.5 2.0 2.5 3.0

T

1 1.5 2 2.5 22.3
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Permutation test [cont’d]

Limitations of the test:

• The uncertainty of the margins is not taken into account

• The size of the list of genes in common can be very small (typically when
the total number of differentially expressed genes is small) and this can
cause an instability in the estimate of T(q)
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We propose a Bayesian model treating also the margins as random variables.
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Bayesian model

Starting from the 2 × 2 table, we specify a multinomial distribution of
dimension 3 for the vector of joint frequencies

Exp B

DE DE

Exp A DE O11(q) O1+(q) − O11(q) O1+(q)

DE O+1(q) − O11(q) n − O+1(q) − O1+(q) + O11(q) n − O1+(q)

O+1(q) n − O+1(q) n

Multi(O | θ, n) ∝ θ
O11(q)
1 θ

[O1+(q)−O11(q)]
2 θ

[O+1(q)−O11(q)]
3 ×

(1 − Σ3
i=1θi)

[n−O+1(q)−O+1(q)+O11(q)]

The vector of parameters θ is modelled as a Dirichlet:

θ ∼ Di(0.25, 0.25, 0.25, 0.25)
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Bayesian model [cont’d]

The derived quantity of interest is the ratio of the probability that a gene is in
common, to the probability that a gene is in common by chance:

R(q) =
θO11(q)

θO1+(q) × θO+1(q)
(1)

Since the model is conjugated, the posterior distribution for θ is again
Dirichlet:

θ ∼ Di(O11(q) + 0.25, [O1+(q) − O11(q)] + 0.25,

. [O+1(q) − O11(q)] + 0.25, [n − O1+(q) − O+1(q) + O11(q)] + 0.25)

We can obtain a sample from the posterior distribution of the derived
quantity R(q)
Credibility intervals (CI) at 95% level can be estimated for each threshold q.

• We can calculate the maximum of R as R(q∗) = maxq R(q) considering
the credibility intervals which do not include 1.
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Results from the Bayesian model
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Results from the Bayesian model[2]
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Animal experiment: Hi Fat Diet vs IRS2

IRS2 data Expression measures are obtained for muscle of 8 weeks old
mice, for two conditions (Wild Type mice and mice with a Knocked Out
gene), through Affymetrix microarray. The knocked out genes is related to the
pathology which occurs when the normal amount of insulin secreted by the
pancreas is not able to help the body utilizing blood glucose.

Hi Fat Diet Expression measures are obtained for 2 months old mice, for
the same tissue and for two conditions related to the diet (Hi Fat Diet and
Normal Fat Diet).

We consider the biological processes level. For both the experiments a list of p
values is returned.

Our interest is finding genes changing due to presence of diet and knock out
gene. – p. 15



Animal experiment: Results
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Discussion

• We proposed a simple procedure to evaluate if two lists of differentially
expressed genes are associated

• The permutation based test allows to have a first look under a model in
which the marginal frequencies are fixed.

• The Bayesian model permits to enlarge the scenario, introducing
variability on all the components

• It is very flexible and can be adapted to several comparisons, at different
levels (e.g. gene level, biological processes level) and for different
problems (e.g. between species comparison, between platform
comparison)
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