
Evolutionary Stochastic Search

Leonardo Bottolo

Institute for Mathematical Sciences, Imperial College London, UK

l.bottolo@imperial.ac.uk

Sylvia Richardson∗

Centre for Biostatistics, Imperial College, London, UK

sylvia.richardson@imperial.ac.uk

Abstract

Implementing Bayesian variable selection for linear Gaussian regression models for analysing high dimen-

sional data sets is of current interest in many fields. In order to make such analysis operational, we propose

a new search algorithm based upon Evolutionary Monte Carlo and designed to work equally well when

n > p or under the “large p, small n” paradigm, thus making multivariate analysis feasible, for example,

in genomics experiments. The methodology is compared with a recently proposed search algorithm in an

extensive simulation study. Finally two real data examples in genomics are presented, demonstrating the

performance of the algorithm in a space of up to 10, 000 covariates.

Keywords: Evolutionary Monte Carlo; Fast Scan Metropolis-Hastings schemes; Linear Gaussian regression

models; Variable selection.

1 Introduction

This paper is a contribution to the methodology of Bayesian variable selection for linear Gaussian regression

models, an important problem which has been much discussed both from a theoretical and a practical perspective

(see Chipman et al., 2001 and Clyde and George, 2004 for extensive literature reviews). Recent advances have

been made in two directions, unravelling the theoretical properties of different choices of prior structure for the

regression coefficients (Fernández et al., 2001; Liang et al., 2008) and proposing algorithms that can explore

efficiently the huge model space consisting of all the possible subsets when there are a large number of covariates,

using either MCMC or other search algorithms (Kohn et al., 2001; Dellaportas et al., 2002; Nott and Kohn,

2005; Hans et al., 2007).

In this paper, we propose a new sampling algorithm for implementing the variable selection model, based on

tailoring ideas from Evolutionary Monte Carlo (Liang and Wong, 2000; Jasra et al., 2007) in order to overcome
∗Address for correspondence: Sylvia Richardson, Department of Epidemiology and Public Health, Imperial College, 1 Norfolk

Place, London, W2 1PG, UK.
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the known difficulties that MCMC samplers face in a high dimension multimodal model space: enumerating the

model space becomes rapidly unfeasible even for a moderate number of covariates. For a Bayesian approach to

be operational, it needs to be accompanied by an algorithm that samples the indicators of the selected subsets

of covariates, together with any other parameters that have not been integrated out. We stress that our new

algorithm for searching through the model space has many generic features that are of interest per se and

can be easily coupled with any prior formulation for the variance-covariance of the regression coefficients. We

illustrate this point by implementing the case of g-priors for the regression coefficients as well as the case of

independent priors: in both cases the formulation we adopt is general and allows the specification of a further

level of hierarchy on the priors for the regression coefficients, if so desired.

The paper is structured as follows. In Section 2, we present the background of Bayesian variable selection,

reviewing briefly alternative prior specifications for the regression coefficients, namely g-priors and independent

priors. Section 3 is devoted to the description of our MCMC sampler which uses a wide portfolio of moves.

Section 4 demonstrates the good performance of our new MCMC algorithm in a variety of examples with

different structure on the predictors, where the number of covariates p ranges between 30 and 1, 000, and the

number of samples n is both larger and smaller than p. A comparison with the recent Shotgun Stochastic Search

algorithm of Hans et al. (2007) is presented. In Section 5 we complement the simulations results by illustrating

the performance of our algorithm with two real data sets, including a challenging case where the number of

predictors is extremely large (p = 10, 000) with respect to the sample size (n = 50). Finally Section 6 contains

some concluding remarks and a discussion of extensions.

2 Background

2.1 Variable selection

Let y = (y1, . . . , yn)T be a sequence of n observed responses and xi = (xi1, . . . , xip)
T a vector of predictors for

yi, i = 1, . . . , n, of dimension p × 1. Moreover let X be the n × p design matrix with ith row xT
i . A Gaussian

linear model can be described by the equation

y = α1n + Xβ + ε,

where α is the unknown constant, 1n is a column vector of ones, β = (β1, . . . , βp)
T is a p× 1 vector of unknown

parameters and ε ∼ N
(
0, σ2In

)
.

Suppose one wants to model the relationship between y and a subset of x1, . . . , xp, but there is uncertainty

about which subset to use. Following the usual convention of only considering models that have the intercept

α, this problem, known as variable selection or subset selection, is particularly interesting when p is large and

parsimonious models containing only a few predictors are sought, with a view to gain interpretability. From a

Bayesian perspective the problem is tackled by placing a constant prior density on α and a prior on β such that

if βj = 0 then the jth predictor does not appear in the expected value of y: as a result the prior structure on

β depends on a latent binary vector γ = (γ1, . . . , γp)
T , where γj = 1 if βj 6= 0 and γj = 0 if βj = 0. The overall
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number of possible models grows exponentially with p and selecting the best model that predicts y is equivalent

to find one over the 2p subsets that form the model space.

Given the latent variable γ, a Gaussian linear model can therefore be written as

y = α1n + Xγβγ + ε, (1)

where βγ is the non-zero vector of coefficients extracted from β, Xγ is the design matrix of dimension n × pγ ,

pγ ≡ γT 1p, with columns corresponding to γj = 1. In the following we will assume that, apart from the intercept

α, x1, . . . , xp contains no variables that would be included in every possible model and that the columns of the

design matrix have all been centred with mean 0.

It is recommended to treat the intercept separately and assign it a constant prior: p (α) ∝ 1, Fernández et

al. (2001), Berger and Molina (2005). When coupled with the latent variable γ, the conjugate prior structure

of
(
βγ , σ2

)
follows a normal-inverse-gamma distribution

p
(
βγ

∣∣σ2
)

= N
(
mγ , σ2Σγ

)
(2)

p
(
σ2 |γ )

= p
(
σ2

)
= InvGa (aσ, bσ) (3)

with aσ, bσ > 0. Some guidelines how to fix the value of the hyperparameters aσ and bσ are provided in Cripps

et al. (2006). The limit case of (3) when aσ → 0 and bσ → 0 corresponds to the Jeffreys’ prior (e.g. Bernardo

and Smith, 1994) for the error variance p
(
σ2

) ∝ σ−2. Taking into account both the likelihood structure (1),

the prior specification for α, (2) and (3), the joint distribution of all the variables (based on further conditional

independence conditions) can be written in general form as

p
(
y, γ, α, βγ , σ2

)
= p

(
y

∣∣γ, α, βγ , σ2
)
p (α) p

(
βγ

∣∣γ, σ2
)
p

(
σ2

)
p (γ) . (4)

The main advantage of the conjugate structure (2) and (3) is the analytical tractability of the marginal

likelihood whatever is the specification of the prior covariance matrix Σγ :
∫

p
(
y

∣∣γ, α, βγ , σ2
)
p (α) p

(
βγ

∣∣γ, σ2
)
p

(
σ2

)
dαdβγdσ2

∝ ∣∣XT
γ Xγ + Σ−1

γ

∣∣−1/2 |Σγ |−1/2 (2bσ + S (γ))−(2aσ+n−1)/2
, (5)

where S (γ) = C − MT K−1
γ M , with C = (y − ȳn)T (y − ȳn) + mT

γ Σ−1
γ mγ , M = XT

γ (y − ȳn) + Σ−1
γ mγ and

Kγ = XT
γ Xγ + Σ−1

γ (Brown et al., 1998).

While the mean of the prior (2) is usually set equal to zero, mγ = 0, a neutral choice with respect to positive

or negative values of the coefficients (Chipman et al., 2001; Clyde and George, 2004), the specification of the

prior covariance Σγ matrix leads to at least two different classes of priors:

• When Σγ = gVγ , where g is a scalar and Vγ =
(
XT

γ Xγ

)−1, it replicates the covariance structure of the

likelihood giving rise to so called g-priors first proposed by Zellner (1986).

• When Σγ = cVγ , but Vγ = Ipγ the components of βγ are conditionally independent and in contrast to

g-priors, independent priors weaken the likelihood covariance structure.
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In the following we will adopt the notation Σγ = τVγ as we want to cover both cases in a unified manner.

Thus in the g-prior case, Σγ = τ
(
XT

γ Xγ

)−1 while in the independent case, Σγ = τIpγ
. We will refer to τ as

the variable selection coefficient for reasons that will become clear in the next Section.

To complete the prior specification in (4), p (γ) must be defined. A complete discussion about alternative

priors on the model space can be found in Chipman (1996) and Chipman et al. (2001), for a new proposal see

Scott and Berger (2006). Here we adopt the beta-binomial prior illustrated in Kohn et al. (2001)

p (γ) =
∫

p (γ |ω ) p (ω) dω =
B (pγ + aω, p− pγ + bω)

B (aω, bω)
(6)

with pγ ≡ γT 1p, where the choice p (γ |ω ) = ωpγ (1− ω)p−pγ implicitly induces a binomial prior distribution

over the model size and p (ω) = ωaω−1 (1− ω)bω−1
/B (aω, bω). The hypercoefficients aω and bω can be chosen

once E (pγ) and V (pγ) have been elicited. From this point of view (6) offers more flexibility than the simpler

binomial model.

2.2 Priors for the variable selection coefficient τ

2.2.1 g-priors

It is a known fact that g-priors have two attractive properties. Firstly they possess an automatic scaling

feature (Chipman et al., 2001; Kohn et al., 2001). In contrast to g-priors, for independent priors the effect of

Vγ = Ipγ on the posterior depends on the relative scale of X and standardisation of the design matrix to units

of standard deviation is recommended (Chipman et al., 2001). However this is not always the best procedure

when the distribution X is possibly skewed, or when the columns of X are not defined on a common scale of

measurement, a case which occurs often in practice when analysing joint data sets.

The second feature that makes g-priors particularly appealing is the rather simple structure of the marginal

likelihood (5) with respect to the constant τ which becomes

∝ (1 + τ)−pγ/2 (2bσ + S (γ))−(2aσ+n−1)/2
, (7)

where, if mγ = 0, S (γ) = ESS (γ) + RSS (γ) / (1 + τ) with

• ESS (γ) = (y − ȳn)T (y − ȳn)− (y − ȳn)T
Xγ

(
XT

γ Xγ

)−1
XT

γ (y − ȳn), the error sum of squares.

• RSS (γ) = (y − ȳn)T
Xγ

(
XT

γ Xγ

)−1
XT

γ (y − ȳn), the regression sum of squares.

Given the above notation, we define R2
γ = RSS (γ) /

(
(y − ȳn)T (y − ȳn)

)
. Despite the simplicity of the marginal

likelihood (7), the choice of the constant τ for g-priors is quite complex, see Fernández et al. (2001), George

and Foster (2000), Cui and George (2008) and Liang et al. (2008).

Historically the first attempt to build a comprehensive Bayesian analysis placing a prior distribution on τ

dates back to Zellner and Siow (1980), where the data adaptivity of the degree of shrinkage accommodates to

different scenarios better than standard fix values. Zellner-Siow priors can be thought as a mixture of g-priors

and an inverse-gamma prior on τ , InvGa(1/2, n/2) leading to

p
(
βγ

∣∣γ, σ2
) ∝

∫
N

(
0, σ2τ

(
XT

γ Xγ

)−1
)

p (τ) dτ (8)
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with

p (τ) =
(n/2)1/2

Γ (1/2)
τ−(1/2+1)e−n/(2τ). (9)

The joint distribution representation (4) can now be written as

p
(
y, γ, α, βγ , τ, σ2

)
= p

(
y

∣∣γ, α, βγ , τ, σ2
)
p (α) p

(
βγ

∣∣γ, τ, σ2
)
p (τ) p

(
σ2

)
p (γ) (10)

while the marginal likelihood has the new integral representation

p (y |γ ) =
∫

p
(
y

∣∣γ, α, βγ , τ, σ2
)
p (α) p

(
βγ

∣∣γ, τ, σ2
)
p (τ) p

(
σ2

)
dαdβγdτdσ2

=
∫

p (y |γ, τ ) p (τ) dτ. (11)

Liang et al. (2008) analyse in details Zellner-Siow priors pointing out a variety of theoretical properties. From

a computational point of view, under (8) and (9), the marginal likelihood (11) is no more available in closed

form which is somehow desirable in order to quickly perform a stochastic search (George and McCulloch, 1997;

Chipman et al., 2001). Even though in the prior set-up (9), no hyperparameters need to be specified and

therefore no calibration is required, and that a Laplace approximation can be derived (Tierney and Kadane,

1986), Zellner-Siow priors never became as popular as the simpler g-prior with a constant value suitably chosen

for the coefficient τ . For alternative prior specifications see also Celeux et al. (2006), Cui and George (2008)

and Liang et al. (2008).

2.2.2 Independent priors

When all the variables are defined on the same scale, which often occurs in biological experiments, independent

priors represent an attractive alternative to g-priors. The likelihood marginalised over α, βγ and σ2 has the

form

p (y |γ ) ∝ τ−pγ/2
∣∣XT

γ Xγ + τIpγ

∣∣−1/2
S (γ)−(2aσ+n−1)/2

, (12)

where S (γ) = 2bσ + (y − ȳn)T (y − ȳn) − (y − ȳn)T
Xγ

(
XT

γ Xγ + τIpγ

)−1
XT

γ (y − ȳn). Note that (12) is com-

putationally more demanding than (7) due to the extra determinant operator. From the above equations it is

also evident that the role of the constant τ in the independent prior set-up is to regularise the quadratic form

XT
γ Xγ when it is ill-conditioned.

Different approaches have been proposed to fix the value of τ . Geweke (1996) suggests to fix a different

value of τj , j = 1, . . . , p, based on the idea of “substantially significant determinant” of ∆Xj with respect

to ∆y. Under this formulation, (12) changes accordingly with τ−pγ/2 replaced by
∏p

j=1 τ
−1/2
j and τIpγ by

Tγ which is the diagonal matrix containing the coefficients attached to the selected covariates. However it is

common practice to standardise the predictor variables, taking τ = 1 in order to place appropriate prior mass

on reasonable values of the regression coefficients (Hans et al., 2007). A final approach consists in placing a prior

distribution on τ (or on τj , j = 1, . . . , p) without standardising the predictors: such a strategy is illustrated for

instance in Bae and Mallick (2004) and Sha et al. (2004).
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2.2.3 Generic set-up

In order to avoid repetitions and accommodate all the cases discussed, we will describe our algorithm with

a generic prior for τ , denoted by p (τ), which becomes a point mass if fixed values for τ are desired. In all

the examples involving g-priors reported in Section 4.4 and 5, we will use the Zellner-Siow prior (8) with

p (τ) = InvGam (1/2, n/2). For the independent prior case, we will use τ = 1 or as in Section 5, a proper but

diffuse prior, p (τ) = Exp (10) i.e. an exponential distribution with E (τ) = 10 suggested by Bae and Mallick

(2004).

Finally, without loss of generality, in the following we will assume that the observed responses y have been

centred with mean 0, i.e. (y − ȳn) ≡ y whatever is the specification of the prior covariance matrix Σγ .

3 MCMC sampler

In this Section we propose a new sampling algorithm that overcomes the known difficulties faced by MCMC

schemes when attempting to sample a high dimension multimodal space. Whatever is the prior structure placed

on the regression coefficients, i.e. g-priors or independent priors, since the parameters β and σ2 are integrated

out, we need to sample only the latent binary vector γ and the variable selection coefficient τ . Sampling βγ in

a forward MCMC exercise given the sampled values of γ and τ is relatively easy as illustrated in the g-prior

set-up by Kohn et al. (2001) and in the independent prior case by Denison et al. (2002).

Consider the general case where a hyperprior on the variable selection coefficient τ is specified for the

regression coefficients. Then the two full conditionals are

p (γ |· · · ) ∝ p (y |γ, τ ) p (γ) , (13)

p (τ |· · · ) ∝ p (y |γ, τ ) p (τ) (14)

and sampling strategies for (13), given τ , include: Gibbs sampling (George and McCulloch, G&McC hereafter,

1993; Liu, 1996), Metropolis-Hastings (G&McC, 1997; Chipman et al., 2001; Kohn et al., 2001; Nott and

Green, N&G hereafter, 2004; Nott and Kohn, 2005), reversible jump-type algorithms (RJ hereafter) (Denison

et al., 1998; Dellaportas et al., 2002) and, more recently, “Shotgun Stochastic Search” (Hans et al., 2007), SSS

hereafter. In general the full conditional (14) is not available is closed form and a Metropolis-within-Gibbs

algorithm, appears a suitable choice.

The multimodality of the model space is a known problem in variable selection (Liang and Wong, 2000;

N&G, 2004; Jasra et al., 2007; Hans et al., 2007) and methods that tackle this problem have been proposed

in the past few years: Liang and Wong (2000) suggest an extension of parallel tempering (Hukushima and

Nemoto, 1996) called Evolutionary Monte Carlo, EMC hereafter; N&G (2004) deal explicitly with the problem

of multicollinearity introducing a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising

model; Jasra et al. (2007) extend EMC methods to varying dimension algorithms. Finally Hans et al. (2007)

propose a new stochastic search algorithm when p > n based on the ability of SSS to explore models that are

in the same neighbourhood in order to quickly find the best combination of predictors.
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Given the full conditionals (13) and (14), we show that the two issues, namely the multimodality of model

space and the dependence between γ and τ , can be solved jointly by applying some suitable “tempering strate-

gies” directly on p (y |γ, τ ).

In the following Subsections we describe an efficient MCMC algorithm to sample from the two full condi-

tionals. In particular we apply an EMC scheme to (13), giving rise to a multiple chains scheme, and an adaptive

Metropolis-within-Gibbs sampler to (14). This latter strategy automatically adapts the variance of the proposal

distribution to the model space visited by the algorithm, avoiding the time consuming tuning of the proposal

in a pre-run MCMC. Moreover it overcomes the known problem of the Gibbs sampler when the prior is proper,

but diffuse (Natarajan and McCulloch, 1998). Further discussions of our motivation for sampling τ are given

in more details in Subsection 3.2.

3.1 EMC sampler for p (γ |· · · )
A large amount of literature exists on EMC and notable examples are: Liang and Wong (2000, 2001), Liu (2001),

Jasra et al. (2007), Goswami and Liu (2007) amongst others. The basic idea of EMC is that it encompasses

the positive features of simulated annealing and genetic algorithm inside a MCMC scheme. It is characterised

by a population of L Markov Chains that are simulated in parallel, each of which attached with a different

temperature. At each EMC sweep, the population of chains is updated using a variety of moves: “local moves”

based on the mutation operator, the ordinary Metropolis-Hastings or Gibbs update on every chain l = 1, . . . , L;

and “global moves” that include selection of the chains to swap based on some probabilistic measures of distance

between them, crossover operator, i.e. partial swap of the current state between different chains, and exchange

operator, full state swap between chains. Global moves are crucial because they allow the algorithm to jump

from one local mode to another.

The logarithm transformation of p (γ |· · · ), f (γ |τ ) = log p (y |γ, τ ) + log p (γ) is the conditional target

function. The population corresponds to a set of chains, that are retained simultaneously. We will use the

double indexing γl,j , l = 1, . . . , L and j = 1, . . . , p to denote the jth latent binary indicator in the lth chain.

Moreover we indicate by γl = (γl,1, . . . , γl,p) the vector of binary indicators that characterise the state of the

lth member of the population.

In what follows, we will only sketch the rationale behind all the moves that we found useful to implement.

For the “large p, small n” paradigm and complex predictor spaces, we believe that using a wide portfolio of

moves is needed and offers sure guarantee of mixing.

Local moves: mutation operator and Fast Scan Metropolis Hastings sampler

Given τ we implemented the simple MC3 idea of Madigan and York (1995), also used by Brown et al. (1998,

2002) where add/delete and swap moves are used to update the latent binary vector γl. However, as noted in

Hans et al. (2007) when p is large relatively to pγ , the algorithm spends most of the time trying to add rather

than delete a variable: given the lth chain with pγl
the size of the current model, the probability of selecting a

variable to be deleted, is pγl
/p and if p is large with respect to pγ the algorithm will spend a very large amount

of time trying to add a variable before selecting a variable to be deleted.
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On the other hand, Gibbs sampling or Metropolised Gibbs sampling (Liu, 1996), are not affected by this

problem since the state of the lth chain is updated by sampling from

p
(
γl,j = 1

∣∣y, γl,j− , τ
)1/tl ∝ exp

{(
log p

(
y

∣∣∣γ(1)
l,j , τ

)
+ log p

(
γl,j = 1

∣∣γl,j−
))

/tl

}
, (15)

where tl is the temperature attached to the lth chain, 1 = t1 < t2 < · · · < tL, γl,j− indicates for the lth chain

all the variables, but the jth, j = 1, . . . , p and γ
(1)
l,j = (γl,1, . . . , γl,j−1, γl,j = 1, γl,j+1, . . . , γl,p)

T . Now the main

problem related to Gibbs sampling is the large number of models it evaluates if a full Gibbs cycle through

j = 1, . . . , p or any permutation of the indices is implemented at each sweep. Each model requires the direct

evaluation, or at least the update, of the time consuming quantity S (γ), equation (7) or (12), making practically

impossible to apply the Gibbs sampler when p is very large. However, as sharply noticed by Kohn et al. (2001),

it is wasteful to evaluate all the p models because if pγ is much smaller than p and given γj = 0, it is likely that

γj “regenerates” as 0.

In the case where p is large, we thus consider instead of the standard MC3 add/delete, swap moves, two

novel Fast Scan Metropolis-Hastings schemes, FSMH hereafter, specialised for EMC/parallel tempering. They

are computationally less demanding than a full Gibbs sampling on all γj and do not suffer from the problem

highlighted before for MC3 and RJ-type algorithms when p is large with respect to pγ . The idea behind the

FSMH is to use an acceptance/rejection step (which is very fast to evaluate) to choose the indices where to

perform the time consuming evaluation of the Gibbs-like step. One key point of our FSMH sampler is that the

probability used in the acceptance/rejection step is “adaptive” and based not only on the current chain model

size pγl
, but also on the temperature tl attached to the lth chain. Full details of the two FSMH schemes that

we are using are given in the Appendix.

Global move: crossover operator

The first step of this move consists in selecting the pair of chains to be operated on. We compute a probability

equal to the weights of the “Boltzmann probability”

pt (γl |τ ) =
exp {f (γl |τ ) /t}

Ft
, (16)

where Ft =
∑L

l=1 exp {f (γl |τ ) /t} and rank all the chains according to this. The first chain is chosen randomly

with normalised Boltzmann weights (16) and the second one is chosen randomly from the top (usually) half

(rounded up) of the chains (excluding the first one). We refer to this first step as “selection operator”.

Suppose that two “offsprings” are then generated from the parental chains according to some crossover

operator described below. The new proposed population of chains γ′ = (γ1, . . . , γ
′
l , . . . , γ

′
r, . . . , γL) is accepted

with probability

α (γ → γ′) = min
{

1,
exp {f (γ′l |τ ) /tl + f (γ′r |τ ) /tr}
exp {f (γl |τ ) /tl + f (γr |τ ) /tr}

Qt (γ′ → γ |τ )
Qt (γ → γ′ |τ )

}
, (17)

where Qt (γ → γ′ |τ ) is the proposal probability.

In the following we will assume that four different crossover operators are selected at random at every

EMC sweep: 1-point crossover, uniform crossover and adaptive crossover (Liang and Wong, 2000) and a novel
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block crossover. Of these four moves, the uniform crossover which “shuffles” the binary indicators along all

the offsprings’ states is expected to have a low acceptance, but to be able to genuinely traverse regions of

low posterior probability. The block crossover essentially tries to swap a group of variables that are highly

correlated: the idea behind is that if variables are correlated their binary latent values should be similar and

trying a 1-point crossover which introduces a random crossover point can destroy the correlation structure.

Therefore the block crossover can be seen as a k-points crossover whose crossover points are not random but

defined from the correlation structure of the covariates. The level of pairwise correlation above which variables

are considered part of the same group is arbitrary but we fixed it at 0.80.

Global move: exchange operator

Exchange operator can be seen as an extreme case of crossover operator, where the first proposed chain receives

the whole second chain state γ′l = γr, and the second proposed chain receives the whole first state chain γ′r = γl,

respectively.

In order to achieve a good acceptance rate, exchange operator is usually applied on adjacent chains in the

temperature ladder, which limits its capacity for mixing. To obtain better mixing, we implemented two different

approaches: the first one is based on Jasra et al. (2007) and the related idea of delayed rejection (Green and

Mira, 2001); the second one on Gibbs distribution over all possible chains pairs (Calvo, 2005). Both of them

perform well in the simulated examples, see Subsections 4.2 and 4.4 and real data applications, see Section 5.

1. The delayed rejection exchange operator tries first to swap the state of the chains that are usually far

apart in the temperature ladder, but, once the proposed move has been rejected, it performs a more

traditional (uniform) adjacent pair selection, increasing the overall mixing between chains on one hand

without drastically reducing the acceptance rate on the other. However its flexibility comes at some extra

computational costs and in particular the additional evaluation of the pseudo move necessary to maintain

detailed balance (Green and Mira, 2001).

2. Alternatively, we attempt a bolder “all-exchange” operator. Swapping the state of two chains that are

far apart in the temperature ladder speeds up the convergence of the simulation since it replaces several

adjacent swaps with a single move. However, this move can be seen as a rare event whose acceptance

probability is low and unknown. Since the full set of possible exchange moves is finite and discrete, it is

easy and computationally inexpensive to calculate all the L (L− 1) /2 exchange acceptance rates between

all chains’ pairs, inclusive the rare ones, p̃l,r = exp {f (γl |τ ) /tl − f (γr |τ ) /tr}, (l, r < l). To maintain

detailed balance condition, the possibility not to perform any exchange (rejection) must be added with

unnormalised probability one. Finally the chains whose states are swopped are selected at random with

probability equal to

ph =
p̃h∑1+L(L−1)/2

h=1 p̃h

, (18)

where in (18) each pair (l, r < l) is denoted by a single number h, p̃h = p̃l,r, including the rejection move,

h = 1.
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Temperature placement

As noted by Goswami and Liu (2007), the placement of the temperature ladder is the most important ingredient

in population based MCMC methods. We propose a procedure for the temperature placement which has the

advantage of simplicity while preserving good accuracy. First of all, we fix the size L of the population based

on the complexity of the problem (Liang and Wong, 2001): in particular we choose L = min {5, E (pγ)}. Our

motivation is to relate the number of models the algorithm simultaneously evaluates at every EMC sweep to

the expected model size. Secondly, we fix a first stage temperature ladder according to a geometric scale such

that tl+1/tl = b, b > 1, l = 1, . . . , L with b relatively large, for instance b = 4. Finally, we adopt a strategy

similar to the one described in Roberts and Rosenthal (2007), but restricted to the burn-in stage, monitoring

only the acceptance rate of the delayed rejection exchange operator. After the kth “batch” of EMC sweeps,

to be chosen but usually set equal to 100, we update bk, the value of the constant b up to the kth batch, by

adding or subtracting an amount δb such that the acceptance rate of the delayed rejection exchange operator

is as closed as possible to 0.50 (Liu, 2001; Jasra et al., 2007), bk+1 = 2log2 bk±δb . Specifically the value of δb

is chosen such that at the end of the burn-in period the value of b can be 1, i.e. all the chains has the same

baseline temperature. To be precise, we fix the value of δb as log2 (b1) /K̃, where b1 is the first value assigned

to the geometric ratio and K̃ is the number of batches in the burn-in period. We stress that this is not an

adaptive EMC scheme since we just adopt the iterative procedure to reach the desired acceptance rate during

the burn-in although a complete adaptive EMC scheme would not difficult to implement.

3.2 Adaptive Metropolis-within-Gibbs for p (τ |· · · )
Various sampling strategies can be used to sample from the posterior distribution of the variable selection

coefficient τ . However, whatever is the prior specification of the prior covariance matrix Σγ , the random variable

τ can be seen as a nuisance parameter. The easiest way to integrate it out is through a Laplace approximation

(Berger et al., 1999) or using a numerical integration such as a quadrature on an infinite interval.

We do not pursue these strategies and the reasons can be summarised as follows. Integrating out τ in the

population implicitly assumes that every chain has its own value of the latent binary vector γl and variable

selection coefficient τl. In this set-up two unpleasant situations can arise: firstly, if a Laplace approximation

is applied, equilibrium in the product space is difficult to reach because the posterior distribution of γl is

conditioned to the chain specific value τ̂γl
. For example, considering for the g-prior case the hyper-g prior

proposed by Liang et al. (2008), it is easy to show that

τ̂γl
= max

{
R2

γl
/ (pγl

+ aτ )[
2bσ/ (yT y) +

(
1−R2

γl

)]
/ [2aσ + n− 1− (pγl

+ aτ )]
− 1, 0

}

with aτ > 2. Now, since the chains with higher temperature are allowed to freely explore the model space, it

is likely that most of the times R2
γl
≈ 0 which implies that also τ̂γl

≈ 0: from (7) it is evident that when the

variable selection coefficient is very small, the marginal likelihood depends weakly on Xγl
. In this situation

chains attached to high temperatures will experience a very unstable behaviour, making the convergence in the

product space hard to reach. The same situation arises also with the Zellner-Siow prior (8). The second problem
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is a direct consequence of the former: since chains at high temperature are unstable, global EMC type moves

are difficult to implement, reducing the overall acceptance rate of both crossover and exchange operators. In

addition, if an automatic tuning of temperature ladder is applied, chains will increasingly be placed at a closer

distance in the temperature ladder in order to compensate the low acceptance rate of the global operators,

negating the purpose of the EMC scheme.

In this paper the convergence is reached instead in the product space
∏L

l=1 p (γl, τ1 |y, X ) i.e. the whole

population is conditioned to the value of τ = τ1 sampled from the first chain. This strategy will alleviate the

problems highlighted before allowing a faster convergence and a better mixing among the chains. The procedure

just described comes with an extra cost i.e. sampling the value of τ . However this step is inexpensive relatively

to the cost required to sample γl, l = 1, . . . , L. There are several strategies that can be used to sample τ

from (14). We found useful to apply the idea of adaptive Metropolis-within-Gibbs described in Roberts and

Rosenthal (2007). In our set-up it has several benefits; amongst others it avoids the known problems faced by

the Gibbs sampler when the prior is proper, but relative flat as it can happen for the Zellner-Siow prior when

n is large or for the independent case considered by Bae and Mallick (2004).

In the following we provide some details of the implementation. Since τ is defined on the real positive axis

we propose the new value of τ on the logarithm scale. In particular we use as proposal the normal distribution

centred at the current value of log (τ) in the g-prior case and 0 in the independent case. The variance of the

proposal distribution is controlled as illustrated in Roberts and Rosenthal (2007): every 100 EMC sweeps,

the same value of EMC sweeps used in the temperature placement, we monitor the acceptance rate of the

Metropolis-within-Gibbs algorithm: if it is lower than the optimal acceptance rate, i.e. 0.44, a constant δτ (K)

is added to lsk, the log standard deviation of the proposal distribution in the kth batch of EMC sweeps. The

value of the constant to be added or subtracted is rather arbitrary but we found useful to fix it as |ls1 − 5| /K̃

i.e. during the burn-in the log standard deviation should be able to reach any values at a distance ±5 in log scale

from the initial value of ls1 usually set equal to zero. Finally the diminishing adaptation condition is obtained

imposing δτ (K) = min{|ls1 − 5| /K̃,K−1/2}, where K̃ and K are the number of batches in the burn-in and

in the whole EMC scheme respectively. The bounded conditions are not a problem since the sequence of the

standard deviations of the proposal distribution stabilises almost immediately, see Subsection 4.4 and Section

5, but we fix them equal to M1 = −10 and M2 = 10 such that lsk ∈ [M1,M2].

3.3 Algorithm

In the following we refer to our proposed algorithm, Evolutionary Stochastic Search as ESS. If g-priors are

chosen the algorithm is denoted as ESSg while we use ESSi if independent priors are selected. Moreover the

same notation is used for cases where τ is fixed or is given a prior distribution. We also assume that the response

vector and the design matrix have both been centred. Based on the two full conditionals (13) and (14) and the

local and global operators introduced earlier, our ESS can be summarised as follows.

• Given τ , sample the population’s states γ from the two steps:

(i) With probability π = 0.5 perform local move and with probability 1− π apply at random one of the
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four crossover operators: 1-point, uniform, block and adaptive crossover. If local move is selected,

apply MC3 if n > p and if p ≥ n use FSMH sampling scheme 2 (see Appendix) independently for

each chain. Moreover when p ≥ n, every 100 sweeps apply on the first chain a complete scan by a

Gibbs sampler.

(ii) Perform the delayed rejection exchange operator (a) or the all-exchange operator (b) with equal

probability. During the burn-in, only select the delayed rejection exchange operator.

• When τ is not fixed but has a prior p (τ), given the latent binary vector γ = γ1 (first chain), sample τ

from an adaptive Metropolis-within-Gibbs sampling (Section 3.2).

From a computational point of view, we used the same fast form for update S (γ) as Brown et al. (1998, 2002),

based on QR decomposition of ESS (γ). Besides its numerical benefits, the QR decomposition automatically

deals with the case pγ ≥ n, a situation that might occur for some chains at high temperature.

4 Simulation study

In this Section we illustrate the performance of ESS described in Subsection 3.3 in a variety of simulated

examples. We firstly analyse the simulated examples with ESSi the version of our algorithm which assumes

independent priors, Σγ = τIpγ , so as to enable comparisons with SSS which also implements an independent

prior. Moreover, in order to make to comparison with SSS fair, in the simulation study only the first step of

the algorithm described in Subsection 3.3 is performed, with τ fixed at 1. As in SSS, standardisation of the

covariates is done before running ESSi. We run ESSi and SSS 2.0 (Hans et al., 2007) for the same number of

sweeps (22,000) and with matching hyperparameters on the model size.

Secondly, to discuss the mixing properties of ESS when a prior p (τ) is defined on τ , we implement both the

g-prior and independent prior set-up for a particular simulated experiment. To be precise in the former case we

will use the Zellner-Siow prior (8) and for the latter we will specify a proper but diffuse exponential distribution

as suggested by Bae and Mallick (2004).

4.1 Simulated experiments

We apply ESS with independent priors to an extensive and challenging range of simulated examples with τ fixed

at 1: the first three examples (Ex1-Ex3) consider the case n > p while the remaining three (Ex4-Ex6) have

p > n. Moreover in all examples, except the last one, we simulate the design matrix, creating more and more

intricated correlation structures between the covariates in order to test the proposed algorithm in different and

increasingly more realistic scenarios. In the last example, we use, as design matrix, a genetic region spanning

500-kb from the HapMap project (Altshuler et al., 2005).

Simulated experiments Ex1-Ex5 share in common the way we build X. In order to create moderate to strong

correlation, we found useful referring to the second simulated example in G&McC (1993) and in G&McC (1997):

throughout we call X1 (n × 60) and X2 (n × 15) the design matrix obtained from these two examples. Then,

as in N&G (2004) Example 2, more complex structures are created by placing side by side combinations of X1
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and/or X2, with different sample size. We will vary the number of samples n in X1 and X2 as we construct our

examples. The levels of β are taken from the simulation study of Fernández et al. (2001), while the number

of true effects, pγ , with the exception of Ex3, varies from 5 to 16. Finally the simulated error variance ranges

from 0.052 to 2.52 in order to vary the level of difficulty for the search algorithm. Throughout we only list the

non-zero βγ and assume that βγ− = 0T . The six examples can be summarised as follows:

Ex1: X = X1 is a matrix of dimension 120 × 60, where the responses are simulated from (1) using α = 0,

γ = (21, 37, 46, 53, 54)T , βγ = (2.5, 0.5,−1, 1.5, 0.5)T , and ε ∼ N
(
0, 22I120

)
. In the following we will not

refer to the intercept α any more since, as described in Subsection 2.1, we consider y centred and hence

there is no difference in the results if the intercept is simulated or not. This is the simplest of our example,

although, as reported in G&McC (1993) the average pairwise correlation is about 0.5, making it already

hard to analyse by standard stepwise methods.

Ex2: This example is taken directly from N&G (2004), Example 2, who first introduce the idea of combining

simpler “building blocks” to create a new matrix X : in their example X =
[
X

(1)
2 X

(2)
2

]
is a 300 × 30

matrix, where X
(1)
2 and X

(2)
2 are of dimension 300×15 and have each the same structure as X2. Moreover

γ = (1, 3, 5, 7, 8, 11, 12, 13)T , βγ = (1.5, 1.5, 1.5, 1.5,−1.5, 1.5, 1.5, 1.5)T and ε ∼ N
(
0, 2.52I300

)
. We chose

this example for two reasons: firstly, since the correlation structure in X2 is very involved, we test the

proposed algorithm under strong and complicated correlations between the covariates; secondly, since y is

not simulated from the second “block”, we are interested to see if the proposed algorithm does not select

any variable that belongs to the second group.

Ex3: As in G&McC (1993), Example 2, X = X1, is a 120 × 60 matrix, β = (β1, . . . , β60)
T , (β1, . . . , β15) =

(0, . . . , 0), (β16, . . . , β30) = (1, . . . , 1), (β31, . . . , β45) = (2, . . . , 2), (β46, . . . , β60) = (3, . . . , 3) and ε ∼
N

(
0, 22I120

)
. The motivation behind this example is to test the strength of the proposed algorithm to

select a subset of variables which is large with respect to p while preserving the ability not to choose any

of the first 15 variables.

Ex4: The design matrix X, 120 × 300, is constructed as follows: firstly we create a new 120 × 60 “building

block”, X3, combining X2 and a smaller version of X1, X∗
1 , a 120× 45 matrix simulated as X1, such that

X3 = [X2X
∗
1 ]. Secondly we place side by side five copies of X3, X =

[
X

(1)
3 X

(2)
3 X

(3)
3 X

(4)
3 X

(5)
3

]
: the new de-

sign matrix alternates blocks of covariates of high and complicated correlation, as in G&McC (1997), with

regions where the correlation is moderate as in G&McC (1993). We simulate the response selecting 16 vari-

ables from X, γ = (1, 11, 30, 45, 61, 71, 90, 105, 121, 131, 150, 165, 181, 191, 210, 225)T such that every pair

belongs alternatively to X2 or X1. We simulate y using βγ = (2,−1, 1.5, 1, 0.5, 2,−1, 1.5, 1, 0.5, 2,−1,−1, 1.5, 1, 0.5)T

with ε ∼ N
(
0, 2.52I120

)
. This example is challenging in view of the correlation structure, the number of

covariates p > n and the different levels of the effects.

Ex5: This is the most challenging example that we simulated and it is based on the idea of contaminated models.

The matrix X, 200 × 1000, is X =
[
X

(1)
3 X

(2)
3 X

(3)
3 X∗∗

1 X
(4)
3 X

(5)
3 X

(6)
3 X

(7)
3 X

(8)
3

]
, with X∗∗

1 , a 200 × 520

larger version of X1. We partitioned the responses such that y = [y1y2]T : y1 is simulated from “model 1”
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( γ1 = (701, 730, 745, 763, 790, 805, 825, 850, 865, 887) and β1
γ = (2,−1, 1.5, 1, 0.5, 2,−1, 1.5, 2,−1)) while

y2 is simulated from “model 2” (γ2 = (1, 38, 63, 98, 125) and β2
γ = (2,−1, 1.5, 1, 0.5)). Finally, fixing

ε ∼ N
(
0, 0.052I200

)
and the sample size in the two models such that y1 and y2 are vectors of dimension

1 × 160 and 1 × 40 respectively, y is retained if, given the sampling variability, we find R2
γ1 ≥ 0.6 and

R2
γ1/8 ≤ R2

γ2 ≤ R2
γ1/10: in this way we know that “model 1” accounts for most of the variability of y,

but without a negligible effect for “model 2”. In this example, we measure the ability of the proposed

algorithm to recognise the most promising model and therefore being robust to contaminations. However

since ESS can easily jump between local modes we are also interested to see if “model 2” is selected.

Ex6: The last simulated example is based on phased genotype data from HapMap project (Altshuler et al.,

2005), region ENm014, Yoruba population: the data set originally contained 1,218 SNPs (Single Nu-

cleotide Polymorphism) for 120 chromosomes, but after eliminating redundant variables, the design ma-

trix reduced to 120 × 775. While in the previous examples a “block structure” of correlated variables

is artificially constructed, in this example blocks of linkage disequilibrium (LD) derive naturally from

genetic forces, with a slow decay of the level of pairwise correlation between SNPs. Finally we chose

γ = (50, 75, 140, 200, 300, 400, 500, 650, 700, 770)T such that the effects are visually inside blocks of LD,

with their size simulated from βγ ∼ N
(
0, 32I10

)
with ε ∼ N

(
0, 0.102I120

)
. Since the simulated effects

can range roughly between (−6, 6), this will allow us to test also the ability of ESSi to select small effects.

We conclude this Subsection by reporting how we conducted the simulation experiment: every example from

Ex1 to Ex6 has been replicated 25 times and the results presented for example Ex1 to Ex5 are averaged over the

25 replicates. For Ex6 the effects size change so average across replicated is only done for the mixing properties.

ESSi with τ =1 was applied to each example/sample, recording the visited sequence of γ1 for 20, 000 sweeps

after a burn-in of 2, 000 required for the automatic tuning of the temperature placement, Subsection 3.1. With

the exception of Ex2 and Ex3, where we used an indifferent prior, p (γ) = (1/2)p, we analysed the remaining

examples setting E (pγ) = 5 with V (pγ) = E (pγ) (1− E (pγ) /p) which corresponds to a binomial prior over

pγ . In order to establish the sensitivity of the proposed algorithm to the choice of E (pγ) we also analysed Ex1

fixing E (pγ) = 10 and 20. Moreover in all the examples we chose L = 5 in keeping with the expected model

size, with the starting value of γ chosen at random. The remaining two hyperparameters to be fixed, namely

aσ and bσ, are set equal to aσ = 10−6 and bσ = 10−3 as in Kohn et al. (2001) which corresponds to a relative

uninformative prior.

4.2 Mixing properties of ESSi

In this Subsection we report some stylised facts about the performance of the ESSi with τ fixed at 1. Figure 1,

top panels, shows for one of the replicates of Ex1, the overall mixing properties of ESSi. As expected, the chains

attached to higher temperatures shows more variability. Albeit the convergence is reached in the product space
∏L

l=1 p (γl |y,X ), by visual inspection each chain marginally reaches its equilibrium with respect to the others;

moreover, thanks to the automatic tuning of the temperature placement during the burn-in, the distributions

of their log posterior probabilities overlap nicely, allowing effective exchange of information between the chains.
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Figure 1, bottom panels, shows the trace plot of the log posterior and the posterior model size for a replicate of

Ex4. We can see that also in the case p > n, the chains mix and overlap well with no gaps between them, the

automatic tuning of the temperature ladder being able to improve drastically the performance of the algorithm.

This effective exchange of information is demonstrated in Table 1 which shows good overall acceptance rates

for the collection of moves that we have implemented. The dimension of the problem does not seem to affect

the acceptance rate of the (delayed rejection) exchange operator which stays very stable and close to the target:

for instance in Ex4 (p = 300) and Ex6 (p = 775) the mean and standard deviation of the acceptance rate are

0.517 (0.105) and 0.497 (0.072) while in Ex5 (p = 1, 000) we have 0.505 (0.013): the higher variability in Ex4

being related to the model size pγ .

With regards to the crossover operators, again we observe stability across all the examples. Moreover, in

contrast to Jasra et al. (2007), when p > n, the crossover average acceptance rate across the 5 chains is quite

stable between 0.147, Ex4, and 0.193, Ex6 (with the lower value in Ex4 here again due to pγ): within our limited

experiments, we believe that the good performance of crossover operator is related to the selection operator,

see Subsection 3.1.

Some finer tuning of the temperature ladder could still be performed as there seems to be an indication that

fewer global moves are accepted with the higher temperature chain, see Table 2, where swapping probabilities

for each chain are indicated. Note that the observed frequency of successful swaps is not far from the case

where adjacent chains are selected to swap at random with equal probability. Other measures of overlapping

between chains (Liang and Wong, 2000; Iba 2001), based on a suitable index of variation of the target function

f (γ) = log p (y |γ ) + log p (γ) across sweeps, confirm the good performance of ESSi. Again some instability is

present in the high temperature chains, see in Table 2 the overlapping index between chains 3, 4 and 4, 5 in

Example 3 to 6.

In order to overcome this problem, we also tried a different temperature placement approach based exclusively

on the overlapping index between chains suggested by Iba (2001). However, while this strategy can give a better

mixing between chains, it is difficult to implement in a fully automatic way: changing the temperature attached

to one chain in order to reach the desired overlapping between two consecutive chains, implicitly modifies also

the overlapping index among all the remaining chains: in the population the overlapping is controlled by L− 1

depending temperatures which are difficult to set together. Our temperature placement implementation instead

depends on just one parameter, the geometric ratio b which is easy to handle.

In Ex1, we also investigate the influence of different values of the prior mean of the model size. We found

that the average (standard deviation in brackets) acceptance rate across replicates for the (delayed rejection)

exchange operator ranges from 0.493 (0.043) to 0.500 (0.040) for different values of the prior mean on the model

size, while the acceptance rate for the crossover operator ranges from 0.249 (0.021) to 0.271 (0.036). This strong

stability is not surprising because the automatic tuning modifies the temperature ladder in order to compensate

for E (pγ). Finally we notice that the acceptance rates for the local move, when n > p, increases with higher

values of the prior mean model size, showing that locally the algorithm moves more freely with E (pγ) = 20

than with E (pγ) = 5.

[Table 1 about here – Table 2 about here – Figure 1 about here]
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4.3 Performance of ESSi and comparison with SSS

Performance of ESSi

We conclude this Section by discussing in details the overall performance of ESSi with respect to the selection

of the true simulated effects. As a first measure of performance, we report for all the simulated examples the

marginal posterior probability of inclusion as described in G&McC (1997) and Hans et al. (2007). In the

following, for ease of notation, we drop the chain subscript index and we exclusively refer to the first chain. To

be precise, we evaluate the marginal posterior probability of inclusion as:

p (γj = 1 |y ) ' C−1
∑

k=1,...,K

1(
γ
(k)
j =1

) (γ) p
(
y

∣∣∣γ(k)
)

p
(
γ(k)

)
(19)

with C =
∑

k=1,...,K p
(
y

∣∣γ(k)
)
p

(
γ(k)

)
and K the number of sweeps after the burn-in. The posterior model

size is similarly defined, p (pγ |y ) ' C−1
∑

k=1,...,K 1(|γ(k)|=pγ) (γ) p
(
y

∣∣γ(k)
)
p

(
γ(k)

)
, with C as before. Besides

plotting the marginal posterior inclusion probability (19) averaged across sweeps and replicates for our simulated

examples, we will also compute the interquatile range of (19) across replicates as a measure of variability.

In order to thoroughly compare the proposed ESS algorithm to SSS (Hans et al., 2007), we present also

some other measures of performance based on p (γ |y ) and R2
γ : first we rank p (γ |y ) in decreasing order and

record the indicator γ that corresponds to the maximum and 1, 000 largest p (γ |y ) (after burn-in). Given the

above set of latent binary vectors, we then compute the corresponding R2
γ leading to “R2

γ : max p (γ |y )” as well

as the mean R2
γ over the 1, 000 largest p (γ |y ), “R2

γ : 1, 000 largest p (γ |y )”, both quantities averaged across

replicates. Moreover the actual ability of the algorithm to reach (quickly) regions of high posterior probability

and persist on them is monitored: given the sequence of the 1, 000 best γ (based on p (γ |y )), the standard

deviation of the corresponding R2
γs shows how stable is the searching strategy at least for the top ranked (not

unique) posterior probabilities: averaging over the replicates, it provides an heuristic measures of “stability” of

the algorithm. Finally we report the average computational time (in minutes) across replicates of ESSi written

in Matlab code and run on a 2MHz CPU with 1.5 Gb RAM desktop computer and of SSS version 2.0 on the

same computer.

Comparison with SSS

Figure 2 presents the marginal posterior probability of inclusion for ESSi with τ = 1 averaged across replicates

and, as a measure of variability, the interquantile range, blue left triangles and vertical blue solid line respectively.

In general the covariates with non zero effects have high marginal posterior probability of inclusion in all the

examples: for example in Ex3, Figure 2 (a), the proposed ESSi algorithm, blue left triangle, is able to perfectly

select the last 45 covariates, while the first 15, which do not contribute to y, receive small marginal posterior

probability. It is interesting to note that this group of covariates, (β1, . . . , β15) = (0, . . . , 0), although correctly

recognised having no influence on y, show some variability across replicates, vertical blue solid line: however,

this is not surprising since independent priors are less suitable in situations where all the covariates are mildly-

strongly correlated as in this simulated example. On the other hand the second set of covariates with small

effects, (β16, . . . , β30) = (1, . . . , 1), are univocally detected. The ability of ESSi to select variables with small

16



effects is also evident in Ex6, Figure 2 (d), where the two smallest coefficients, β2 = 0.112 and β10 = 0.950 (the

second and last respectively from left to right), receive from high to very high marginal posterior probability

(and similarly for the other replicates, data not shown). In some cases however, some covariates attached with

small effects are missed (e.g. Ex4, Figure 2 (b), the last simulated effect which is also the smallest, β16 = 0.5,

is not detected). In this situation however the vertical blue solid line indicates that for some replicates, ESSi

is able to assign small values of the marginal posterior probability giving evidence that ESSi fully explore the

whole space of models.

Superimposed on all pictures of Figure 2 are the median and interquantile range across replicates of

p (γj = 1 |y ), j = 1, . . . , p, for SSS, red right triangles and vertical red dashed line respectively. We see that

there is good agreement between the two algorithms in general, with in addition evidence that ESSi is able to

explore more fully the model space and in particular to find small effects, leading to a posterior model size that

is close to the true one. For instance in Ex3, where the last 30 covariates accounts for most of R2
γ , SSS has

difficulty to detect (β16, . . . , β30), while in Ex6, it misses β2 = 0.112, the smallest effect and surprisingly also

β4 = −2.595 assigning a very small marginal posterior probability (and in general for the small effects in most

replicates, data not shown). However the most marked difference between ESSi and SSS is present in Ex5: as

for ESSi, SSS misses three effects of “model 1” but in addition β4 = 1, β7 = −1 and β8 = 1.5 receive also very

low marginal posterior probability, red right triangle, with high variability across replicates, vertical red dashed

line. Moreover on the extreme left, as noted before, ESSi is able to capture the biggest coefficient of “model

2” while SSS misses completely all contaminated effects. No noticeable differences between ESSi and SSS are

present in Ex1 and Ex2 for the marginal posterior probability, while in Ex4, SSS shows more variability in

p (γj = 1 |y ) (red dashed vertical lines compared to blue solid vertical lines) for some covariates that do receive

the highest marginal posterior probability.

In contrast to the differences in the marginal posterior probability of inclusion, there is general agreement

between the two algorithms with respect to some measures of goodness of fit and stability, see Table 3. Again,

not surprisingly, the main difference is seen in Ex5 where ESSi with τ = 1 reaches a better R2
γ both for the

maximum and the 1, 000 largest p (γ |y ). SSS shows more stability in all examples, but the last: this was

somehow expected since one key features of SSS in its ability to move quickly towards the right model and

to persist on it (Hans et al., 2007), but a drawback of this is its difficulty to explore far apart models with

competing R2
γ as in Ex5. Note that ESSi shows a small improvement of R2

γ in all the simulated examples.

This is related to the ability of ESSi to pick up some of the small effects that are missed by SSS, see Figure

2. Finally ESSi shows a remarkable superiority in terms of computational time especially when the simulated

(and estimated) pγ is large (in other simulated examples, data not shown, we found this is always true when

pγ & 10): the explanation lies in the number of different models SSS and ESSi evaluate at each sweep. Indeed,

SSS evaluates p + pγ (p− pγ), where pγ is the size of the current model, while ESSi theoretically analyses an

equally large number of models, pL, but, when p > n, the actual number of models evaluated is drastically

reduced thanks to our FSMH sampler. In only one case SSS beats ESSi in term of computational time (Ex5),

but in this instance SSS clearly underestimates the simulated model and hence performs less evaluations than

would be necessary to explore faithfully the model space. In conclusion, we see that the rich porfolio of moves
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and the use of parallel chains makes ESS robust for tackling complex covariate space as well as competitive

against a state of the art search algorithm.

[Table 3 about here – Figure 2 about here]

4.4 Performance of ESS with hyperprior on τ

In the previous Section we reported the comparison between ESSi with τ fixed at 1 and SSS. However this is

just one over many configurations of our algorithm: several others can be thought of using both g-priors or

independent priors with or without a hyperprior on τ . In Figure 3 we illustrate the performance of ESSg when

the Zellner-Siow prior (8) is adopted and that of ESSi when a diffuse but proper exponential prior is specified

for τ . We stress that this analysis is done purely with the aim to show the behaviour of the proposed algorithm

and we do not enter here into the debate of which is the optimal prior for the regression coefficients. Figure

3 (a) illustrate these comparisons on example Ex3. Firstly we note that both ESSi specifications recover well

the true model, assigning a small posterior probability of inclusion for the first 15 covariates. However while

ESSi shows some uncertainty about the set of predictors not associated to y, ESSg has the remarkable ability to

ignore them completely. On the other hand, the uncertainty for ESSg is shifted to the next group of variables

whose effect is small, (β16, . . . , β30) = (1, . . . , 1), compared to the simulated error variance: the median of the

posterior probability of inclusion averaged across replicates is close to 1 for all of them, but the interquatile

range shows non negligible uncertainty about the estimates.

Figure 3 (b) presents the trace plot and the posterior kernel density of τ for one replicate of Ex3 when two

different configurations of ESS are adopted, ESSg with the Zellner-Siow prior, top panels, and ESSi with a

diffuse exponential prior centred in 10, bottom panels. In both cases equilibrium on the product space is easily

reached and marginally this is evident from the trace plots of τ , left panels. Moreover the chains mix well with

an acceptance rate extremely close to the target value, 0.448 and 0.445 respectively and they move quickly, after

few iterations, to the target distribution.

The right panels show a complementary story. For ESSg, top right panel, p (τ |y, X ), black solid line, leans

quite far apart from the prior distribution, red solid line. The posterior mode is 7, 223, a value almost double

with respect to the Benchmark prior proposed by Fernández et al. (2001) in the g-prior set-up. Finally the

bottom right panel presents the posterior kernel density of the variable selection coefficient obtained running

ESSi when a diffuse prior for τ is adopted, red solid line: in this case the posterior mass concentrates around

1.144, a value not very far from 1 which is the recommended choice for τ after standardisation of the covarites.

[Figure 3 about here]

5 Illustration of ESS on real data sets

The first real data example is an application of the Gaussian linear regression model to investigate genetic

regulation. To discover the genetic causes of variation in the expression of genes, gene expression data are

treated as a quantitative phenotype while genotype data (SNPs) are used as predictors. This analysis, known
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as expression Quantitative Trait Loci (eQTL), can be seen as an extension of genetic mapping, i.e. locating the

source of variation of quantitative traits. Two main problems are related to eQTL analysis: the large number

of responses which are not independent and the even larger number of predictors. In current practice, the first

problem is ignored, while the second is traditionally solved using univariate measures of association, e.g. a

t-test, corrected for multiplicity. Such analyses ignore the interesting possibility of control by more than one

gene, so called polygenic control.

Here we focus on the ability of ESS to find a parsimonious set of predictors in an animal data set (Hubner et

al., 2005), where the number of observations, n = 29 is small with respect to the number of covariates p = 1, 421.

This situation, where n ¿ p, is quite common in animal data since environmental sources of variation are taken

under control as well as the biological diversity of the sample. For illustration, we report the analysis of one

gene expression response, where we both apply ESSi with and without the hyperprior on τ (see Table 4, eQTL

analysis). In this latter case, thanks to the adaptive proposal, the Markov Chain for τ mixes very well reaching

an overall acceptance rate which is close to the target value 0.44. Moreover, despite the flat prior that we placed

on τ , the posterior distribution is concentrated around 1.430.

In both cases a good mixing among the L = 4 chains is obtained. The automatic tuning of the temperature

ladder works quite well in both cases reaching an acceptance rate for the monitored exchange operator very

close to the optimal one, 0.50. Other measures of mixing show no erratic behaviour of the chains with the last

one, l = 4 interacting marginally less with the others. Finally running ESS on the same 2MHz CPU with 1.5

Gb RAM desktop computer for 20, 000 sweeps after a burn-in of 5, 000, the computational time is rather similar

with or without the hyperprior τ , 28 and 30 minutes respectively.

The main difference among the two implementations of ESSi is related to the posterior model size. When

τ is fixed, there is more uncertainty and consequently, more support for larger models, see Figure 4 (a). This

is reflected in the marginal posterior probability of inclusion: while there is general agreement for the larger

effects, ESSi with a diffuse prior shrink more the small effects. This is not surprising considering the value of

the posterior mean of the variable selection coefficient 1.430 greater than 1. On the other hand the best model

visited is the same for both version of ESSi, while, when a hyperprior on τ is implemented, we observe a clear

degradation of the stability index. This is also evident by looking at “R2
γ : 1, 000 largest p (γ |y )”, see Table 4

eQTL analysis. In both cases we fix E (pγ) = 5 and V (pγ) = 3.

Our second example is related to the application of model (1) in another genomics example: 10, 000 SNPs,

selected genome-wide from a candidate gene study, are used to predict the variation of Mass Spectography

metabolomics data in a small human population, an example of a so-called mQTL experiment. A suitable

dimension reduction of the data is performed to divide the spectra in regions or bins and log10-transformation

is applied in order to normalised the signal. Since the correlation structure of the SNPs reflects rich patterns

of linkage disequilibrium, we decided to apply ESSg, the version of our algorithm with g-priors that is better

suited to complex correlation structures among the predictors, coupled with the Zellner-Siow prior (8).

We present the key findings related to a particular metabolite bin, but the same comments can be extended

to the analysis of the whole data set, where we regressed every metabolites bin versus the genotype data (n = 50

and p = 10, 000). In this very challenging case, we still found an efficient mixing of the chains (see Table 4,
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mQTL analysis). Note that the posterior mean of τ , 89.810, is not close to commonly chosen values for τ , for

example the Unit Information Prior τ = n or the Benchmark prior τ = p2 (Fernández et al., 2001). In this

complex example, the data driven level of shrinkage plays a fundamental role to select the parsimonious set of

predictors. In both examples, the posterior model size support polygenic control (Figure 4) highlighting the

interest of performing multivariate analysis in genomics.

As expected in view of the very large number of predictors, in the mQTL example the computational time is

quite large, around 5 hours for 20, 000 sweeps after a burn-in of 5, 000, but as shown in Table 4 by the stability

index (≈ 0), we believe that the number of iterations chosen really exceed what it is required in order to visit

faithfully the model space. For such large data analysis tasks, parallelisation of the code could provide big gains

of computer time and would be ideally suited to our multiple chains approach.

[Table 4 about here – Figure 4 about here]

6 Discussion

6.1 MCMC issues

The key idea in constructing an effective MCMC sampler for γ and τ is to add an extra parameter, the

temperature, that weakens the likelihood contribution and allows to escape from local modes. Running parallel

chains at different temperature is on the other hand expensive and the added computational cost has to be

balanced against the gains arising from the various “exchanges” between the chains. This is why we focussed

on developing a good strategy for selecting the pairs of chains, using both marginal and joint information

between the chains to be exchanged, attempting bold and more conservative exchanges. Combining this with

an automatic choice of the temperature ladder during burn-in is one of the key element of our ESS algorithm.

We believe that using parallel tempering in this way has the potential to be effective in a wide range of situations

where the posterior space is multimodal. In order for our algorithm to be able to tackle the case where p is

large with respect to pγ , the second important element is the use of a Metropolised Gibbs sampling-like step

restricted to a well chosen set of indices in the local updating of the latent binary vector, rather than an MC3

or RJ-like updating move. The new Fast Scan Metropolis Hastings sampler that we propose to perform these

local moves achieves an effective compromise between full Gibbs sampling that is not feasible when p is large

and vanilla add/delete moves as outlined in Subsection 4.2.

Note that whilst we found necessary to develop an extensive and diverse set of moves to update γ, if a model

with a prior on τ is preferred, the updating of τ itself present no particular difficulties and is computationally in-

expensive. Moreover using an adaptive sampler makes the algorithm self contained without any time consuming

tuning of the proposal variance. This latter strategy works perfectly well both in the g-prior and independent

prior case as illustrated in Subsection 4.4 and Section 5. Finally, note that our current implementation does

not make use of the output of the heated chains for posterior inference. Whether gains in variance reduction

could be achieved by using suitably reweighting of the output of all the chains, in the spirit of Gramacy et al.

(2007) is an area for further exploration, which is beyond the scope of the present work.
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6.2 Extensions

Our approach has been applied so far to linear regression with univariate response y. An interesting general-

isation is that of a multidimensional n × q response Y and the identification of regressors that jointly predict

the Y (Brown et al., 1998, 2002). Much of our set-up and algorithm carries through without difficulties and we

implemented our algorithm in this framework in a challenging case study in genomics with multidimensional

outcomes (four phenotypes and 1, 421 genotypes).

Another possible extension is to analyse multidimensional response Y by a system of q regressions linked in

a suitable hierarchical way once α, βγ and σ2 have been integrated out. This is a promising area of research

that we have already started and are keen to fully pursue in near future.

Appendix

A FSMH schemes

Let γl,j , l = 1, . . . , L and j = 1, . . . , p to denote the jth latent binary indicator in the lth chain. As in Kohn et al.

(2001), let γ
(1)
l,j = (γl,1, . . . , γl,j−1, γl,j = 1, γl,j+1, . . . , γl,p)

T and γ
(0)
l,j = (γl,1, . . . , γl,j−1, γl,j = 0, γl,j+1, . . . , γl,p)

T .

Furthermore let L
(1)
l,j ∝ p

(
y

∣∣∣γ(1)
l,j , g

)
and L

(0)
l,j ∝ p

(
y

∣∣∣γ(0)
l,j , g

)
and finally θ

(1)
l,j = p

(
γl,j = 1

∣∣γl,j−
)

and θ
(0)
l,j =

1− θ
(1)
l,j . From (6) it is easy to prove that

θ
(1)
l,j = p

(
γl,j = 1

∣∣γl,j−
)

=
pγl

+ aω − 1
p + aω + bω − 1

, (A.1)

where pγl
is the current model size for the lth individual. Using the above equation, for γl,j = 1 the normalised

version of (15) can be written as

p
(
γl,j = 1

∣∣y, γl,j− , g
)1/tl =

θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

S (1/tl)
, (A.2)

where S (1/tl) = θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

+ θ
(0)
l,j

1/tl

L
(0)
l,j

1/tl

with p
(
γl,j = 0

∣∣y, γl,j− , g
)1/tl defined similarly. Hence if

θ
(1)
l,j

1/tl

is very small, then p
(
γl,j = 1

∣∣y, γl,j− , g
)1/tl is small as well.

In the following we derive two FSMH schemes specialised for EMC/PT. Omitting the subscript l for sim-

plicity, we define Q (1 → 0) = Q
(
γ

(1)
l,j → γ

(0)
l,j

)
as the proposal probability to go from 0 to 1 and Q (1 → 0) the

proposal probability to go from 1 to 0. Moreover using the notation introduced before, the Metropolised version

of (15) to go from 0 to 1 in the EMC local move is

αMH
l (0 → 1) = min



1,

θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

θ
(0)
l,j

1/tl

L
(0)
l,j

1/tl

Q (1 → 0)
Q (0 → 1)



 (A.3)

with a similar expression for αMH
l (1 → 0). The proof of the Propositions are omitted since they are easy

to check. We first introduce the following Proposition which is useful for the calculation of the acceptance

probability in the FSMH schemes.

Proposition 1 The following three conditions are equivalent:
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a) L
(0)
l,j

1/tl
/

L
(1)
l,j

1/tl ≥ 1 ;

b) L
(1)
l,j

1/tl
/

S̃ (1/tl) ≥ 1 ;

c) L
(0)
l,j

1/tl
/

S̃ (1/tl) < 1 ,

where S̃ (1/tl) = S (1/tl)
/(

θ
(1)
l,j

1/tl

+ θ
(0)
l,j

1/tl

)
.

Sampling scheme 1

Proposition 2 Let l = 1, . . . , L, j = 1, . . . , p (or any permutation of them) and

• QFSMH1 (0 → 1) = θ̃
(1)
l,j (1/tl)min

{
1, L

(1)
l,j

1/tl
/

S̃ (1/tl)
}

• QFSMH1 (1 → 0) = θ̃
(0)
l,j (1/tl)min

{
1, L

(0)
l,j

1/tl
/

S̃ (1/tl)
}

with θ̃
(1)
l,j (1/tl) = θ

(1)
l,j

1/tl

/(
θ
(1)
l,j

1/tl

+ θ
(0)
l,j

1/tl

)
and θ̃

(0)
l,j (1/tl) = 1− θ̃

(1)
l,j (1/tl). Then the acceptance proba-

bilities are

αFSMH1
l (0 → 1) =





1 if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl ≥ 1

S̃ (1/tl)
/

L
(0)
l,j

1/tl

if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl

< 1

αFSMH1
l (1 → 0) =





1 if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl ≥ 1

S̃ (1/tl)
/

L
(1)
l,j

1/tl

if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl

< 1

The above sampling scheme is implemented as follows. For a given l and for j = 1, . . . , p (or any permutation of

them) let u ∼ U (0, 1). Consider for simplicity 0 → 1. If u > θ̃
(1)
l,j (1/tl) then u > QFSMH1 (0 → 1) and the move is

rejected. If u ≤ θ̃
(1)
l,j (1/tl) then QFSMH1 (0 → 1) must be evaluated. In the second step the proposal distribution

equals (A.2): therefore sampling scheme 1 can be seen as a random scan Metropolised Gibbs sampling where

the number of evaluations is linked to the prior/current model size and the temperature attached to the chain.

Sampling scheme 2

The second sampling scheme retains the idea of a two-step Metropolis-Hastings acceptance rate as in FSMH1.

However it simplifies ever further the computation requirements using the normalised tempered version of (6)

as a proposal.

Proposition 3 Let l = 1, . . . , L, j = 1, . . . , p (or any permutation of them) and

• QFSMH2 (0 → 1) = θ̃
(1)
l,j (1/tl)

• QFSMH2 (1 → 0) = θ̃
(0)
l,j (1/tl)
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with θ̃
(0)
l,j (1/tl) = 1− θ̃

(1)
l,j (1/tl). The acceptance probabilities are

αFSMH2
l (0 → 1) =





1 if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl ≥ 1

L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl

if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl

< 1

αFSMH2
l (1 → 0) =





1 if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl ≥ 1

L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl

if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl

< 1

The following Proposition compares the efficiency of the tempered Gibbs sampling (15) and the proposed

FSMH schemes in Proposition 2 and 3. Proof is easy to check and it is omitted.

Proposition 4 Let QG (·), QFSMH1 (·) and QFSMH2 (·) as proposal probabilities and αFSMH1 (·) and αFSMH2 (·)
as acceptance probabilities for Gibbs sampling and FSMH schemes respectively, then

QG (0 → 1) > QFSMH1 (0 → 1) αFSMH1 (0 → 1)

= QFSMH2 (0 → 1) αFSMH2 (0 → 1)

QG (1 → 0) > QFSMH1 (1 → 0) αFSMH1 (1 → 0)

= QFSMH2 (1 → 0) αFSMH2 (1 → 0)

The above Proposition states that the Gibbs sampler is more efficient than the FSMH schemes, i.e. for a fixed

number of iterations, Gibbs sampling MCMC standard error is lower than for FSMH samplers. However the

Gibbs sampler is computationally more expensive so that, if p is very large, as described in Kohn et al. (2001),

FSMH schemes become more efficient per floating point operation.
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Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

E (pγ) 5 10 20 5 5 5 5 5

Add/delete 0.036 0.054 0.098 0.066 0.086 - - -

(0.016) (0.017) (0.023) (0.020) (0.031) - - -

Swap 0.063 0.100 0.165 0.070 0.106 - - -

(0.015) (0.019) (0.022) (0.015) (0.053) - - -

Crossover 0.249 0.270 0.271 0.157 0.215 0.147 0.170 0.193

(0.021) (0.029) (0.036) (0.018) (0.022) (0.028) (0.023) (0.028)

Exchange 0.500 0.493 0.500 0.582 0.492 0.517 0.505 0.497

(delayed rejection) (0.040) (0.043) (0.040) (0.020) (0.071) (0.105) (0.013) (0.072)

Table 1: Mean and standard deviation in brackets of EMC acceptance rates across replicates for ESSi with

τ = 1.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

E (pγ) 5 10 20 5 5 5 5 5

Swapping

l = 1

l = 2

l = 3

l = 4

l = 5

0.157

0.250

0.220

0.240

0.142

0.137

0.232

0.220

0.252

0.160

0.110

0.204

0.223

0.280

0.182

0.065

0.185

0.255

0.293

0.201

0.160

0.271

0.245

0.215

0.110

0.180

0.276

0.223

0.206

0.112

0.201

0.300

0.231

0.182

0.083

0.214

0.316

0.231

0.167

0.070

Overlapping

l = 1, 2

l = 2, 3

l = 3, 4

l = 4, 5

1.360

1.570

1.400

1.100

1.600

1.570

1.290

0.992

2.101

1.600

1.050

0.690

2.680

0.870

0.600

1.251

1.350

1.430

2.111

4.131

0.733

1.021

1.329

1.503

0.569

0.913

1.491

2.304

0.526

0.893

1.696

2.499

Table 2: Swapping probability for ESSi with τ = 1 defined as the observed frequency of successful swaps for each

chain (including delayed rejection exchange and all-exchange operators) averaged across replicates. Overlapping

measure defined as V (f (γl)) (1/tl+1 − 1/tl)
2, Liang and Wong (2000) with f (γl) = log p (y |γl ) + log p (γl).

Target value for consecutive chains is O (1).
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Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

E (pγ) 5 10 20 5 5 5 5 5

ESSi,

τ=1

R2
γ : max p (γ |y ) 0.864 0.867 0.871 0.975 ≈ 1 0.962 0.703 0.997

(0.029) (0.027) (0.023) (0.003) (≈ 0) (0.011) (0.043) (0.005)

R2
γ : 1, 000 largest p (γ |y ) 0.863 0.866 0.874 0.975 ≈ 1 0.957 0.689 0.997

(0.027) (0.026) (0.023) (0.003) (≈ 0) (0.014) (0.048) (0.003)

Stability 0.003 0.003 0.005 ≈ 0 (≈ 0) 0.005 0.015 0.002

(0.001) (0.002) (0.002) (≈ 0) (≈ 0) (0.004) (0.007) (0.002)

Time 6 6 7 16 18 166 338 202

(< 1) (< 1) (< 1) (< 1) (1) (32) (43) (40)

SSS

R2
γ : max p (γ |y ) 0.863 0.867 0.870 0.975 ≈ 1 0.956 0.577 0.997

(0.027) (0.025) (0.024) (0.003) (≈ 0) (0.016) (0.074) (0.004)

R2
γ : 1, 000 largest p (γ |y ) 0.863 0.867 0.870 0.975 0.999 0.955 0.565 0.996

(0.027) (0.025) (0.024) (0.003) (≈ 0) (0.016) (0.078) (0.004)

Stability 0 0 ≈ 0 ≈ 0 ≈ 0 0.001 0.009 0.004

(0) (0) (≈ 0) (≈ 0) (≈ 0) (0.002) (0.015) (0.006)

Time 12 12 13 118 497 502 169 549

(1) (2) (2) (26) (75) (241) (81) (159)

Table 3: Comparison between ESSi with τ = 1 and SSS for the six simulated examples. Standard deviation in

brackets.

Mode(pγ |y ) E (τ |y )
R2

γ :

max p (γ |y )

R2
γ :

1, 000 largest

p (γ |y )

Stability

eQTL
ESSi, τ = 1 3 − 0.859 0.850 0.054

ESSi with p (τ)∗ 3 1.430 0.859 0.764 0.110

mQTL ESSg with p (τ)∗∗ 2 89.810 0.843 0.843 ≈ 0

Crossover
Exchange

(delayed rejction)

Acceptance

rate τ
Time

eQTL
ESSi, τ = 1 0.078 0.548 − 27

ESSi with p (τ)∗ 0.123 0.525 0.452 30

mQTL ESSg with p (τ)∗∗ 0.080 0.628 0.452 309

Table 4: Comparison between ESSi with and without the prior on τ for the first real data example, eQTL

analysis, and ESSg with the Zellner-Siow prior for the second example, mQTL analysis (p (τ)∗ = Exp (10) and

p (τ)∗∗ = InvGam (1/2, n/2)).
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Figure 1: For ESSi with τ = 1: (a) trace plot of the log posterior probability, log p (γ |y ) and (b) model size, pγ ,

across sweeps for one replicate of Ex1 with E (pγ) = 20, top panels and Ex4, bottom panels. Vertical dashed

lines indicate the end of the burn-in.
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Figure 2: Median and interquantile range of the marginal posterior probability of inclusion (19) for Ex3, (a),

Ex4, (b) and Ex5, (c), across replicates. Each graph is constructed as follows: bottom part, pairwise r2 for one

selected replicate, grey scale indicates different values of squared correlation; blue left and red right triangles,

median of p (γj = 1 |y ), j = 1, . . . , p, across replicates for ESSi with τ = 1 and SSS respectively; vertical blue

solid lines and vertical red dashed lines, interquantile range of p (γj = 1 |y ), j = 1, . . . , p, across replicates for

ESSi and SSS respectively; upper and lower green triangles, simulated models. Selected replicate of Ex6, (d),

shows marginal posterior probability of inclusion (blue left and red right triangles for ESSi τ = 1 and SSS

respectively). Marginal posterior probability of inclusion lower than 0.025 not shown.

29



0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Variables

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  p
(γ

j=1
|y

)

 

 

ESSg with p(τ)
ESSi with p(τ)
Simulated model

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2
x 10

4

Sweeps

τ

0 5000 10000 15000 20000
0

1

2

3

4
x 10

−3

τ

p
(τ

)

 

 
Post. density
Prior density

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

Sweeps

τ

0 0.5 1 1.5 2
0

1

2

3

4

τ

p
(τ

)

 

 
Post. density
Prior density

(b)

Figure 3: (a) Median and interquantile range of the marginal posterior probability of inclusion (19) across

replicates for Ex3 when ESSg is applied with Zellner-Siow prior (median, back left triangles and interquantile

range, vertical black solid lines) and ESSi is used with a proper but diffuse exponential prior centred in 10

(median, magenta right triangles and interquantile range, vertical magenta dashed lines). Upper green triangles,

simulated models. Marginal posterior probability of inclusion lower than 0.025 not shown. (b) Top panels, trace

plot and posterior kernel density of τ for ESSg with Zellner-Siow prior; bottom panels, trace plot and posterior

kernel density of τ for ESSi with diffuse exponential prior centred in 10. Vertical dashed lines on the right

panels indicate the end of the burn-in. Red lines on the right panels show prior density.
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Figure 4: (a) Posterior model size for the first real data example related to eQTL analysis: black solid line for

ESSi with τ fixed at 1 and black dashed line for ESSi with flat exponential distribution on τ . (b) Posterior

model size for mQTL analysis, second real data example, using ESSg coupled with Zellner-Siow prior.
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