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Summary

We review the use of Bayesian methods for analyzing gene expression data. We focus on
methods which select groups of genes on the basis of their expression in RNA samples
derived under different experimental conditions. We first describe Bayesian methods for
estimating gene expression level from the intensity measurements obtained from analysis
of microarray images. We next discuss the issues involved in assessing differential
gene expression between two conditions at a time, including models for classifying the
genes as differentially expressed or not. In the last two sections, we present models
for grouping gene expression profiles over different experimental conditions, in order
to find co-expressed genes, and multivariate models for finding gene signatures, i.e.
for selecting a parsimonious group of genes that discriminate between entities such as
subtypes of disease.
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1. Introduction

High throughput technologies such as DNA microarrays have emerged over the last
5-10 years as one of the key source of information for functional genomics. Microar-
rays permit researchers to capture one of the fundamental process in molecular biology,
the transcription process from genes into mRNA (messenger RNA), that will be subse-
quently translated to form proteins. This process is called gene expression. By quanti-
fying the amount of transcription, microarrays allow the identification of the genes that
are expressed in different types of cells, different tissues and to understand the cellular
processes in which they intervene, thus giving a unique insight into the function of
genes. However, transforming the huge quantity of data which is currently produced
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in experiments which involve microarrays into useful knowledge for system biology is
not trivial and research into ways of interpreting this rich body of data has become an
active area, involving statisticians, machine learning and computer scientists.

Microarrays generally contain thousands of spots (or probes) at each of which a
particular gene or sequence is represented. In effect a microarray experiment represents
data comparable to that obtained by performing tens of thousands of ‘experiments’
of a similar type in parallel. The ‘experiments’ on a given array will share certain
characteristics related to the manufacturing process of the particular array used and
the extraction and handling of the biological sample hybridized to the array. The
interest is in comparing expression levels between arrays with samples from different
biological conditions of interest (e.g. cancerous against non-cancerous cells) and the
challenge is identifying differences that are related to the biology of the samples rather
than to technical experimental variation.

Many of the characteristic features of experiments involving microarrays render them
particularly well suited to a flexible modeling strategy within the Bayesian framework.
The aim of this chapter is to focus on the unique contribution that Bayesian methods
offer and highlight this by discussing in detail the steps taken for modeling the variability
in gene expression data at several levels.

The framework of Bayesian hierarchical modeling refers to a generic model building
strategy in which unobserved quantities are organized into a small number of discrete
levels with logically distinct and scientifically interpretable functions and probabilistic
relationships between them that capture inherent features of the data. It is of course
important to perform some basic exploration and visualization of the data before for-
mulating complex models; see hsg006 for examples. The hierarchy of levels makes it
particularly suitable for modeling gene expression data, which arises from a number of
processes and is affected by many sources of variability. We shall see in the next sec-
tions an approach to modeling these different sources of variability using fixed effects,
random effects and distributional assumptions.

One of the most important aspects of Bayesian hierarchical modeling as regards
microarray data is the sharing of information across parallel units. For example, gene
expression experiments used by biologists to study fundamental processes of activa-
tion /suppression frequently involve genetically modified animals or specific cell lines,
and such experiments are typically carried out only with a small number of biologi-
cal samples. It is clear that this amount of replication makes standard estimates of
gene variability unstable. By assuming exchangeability across the genes, inference is
strengthened by borrowing information from comparable units.

Another strength of the Bayesian framework is the propagation of uncertainty
through the model. Due to the many sources of systematic variation between arrays
and samples, gene expression data is often processed through a series of steps, each
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time estimating and subtracting effects in order to make the arrays comparable. The
end result of this process can be over-confident inference, as the uncertainty associated
with each step is ignored. In a Bayesian model it is straightforward to include each of
these effects simultaneously, thus retaining the correct level of uncertainty on the final
estimates. Further, when including in the model structured priors that are associated
with classification, e.g. mixture priors, estimates of uncertainty of the classification are
obtained along with the fit of the model.

The field of microarray data analysis is very large, and it is not possible to cover
all aspects in this chapter. In particular, we do not discuss methods for estimating
graphical models and Bayesian networks that are aimed at understanding regulatory
networks or metabolic pathways. There is a large literature on this subject, see for
example a number of chapters in Do et al. (2006), and references therein. See also
chapter hsg009, and hsg006 and hsg007 for non-Bayesian approaches.

We focus on methods which select groups of genes on the basis of their expression
in RNA samples derived under different experimental conditions. We start, in the next
section, by looking at two Bayesian methods for estimating gene expression level from
the intensity measurements obtained from analysis of microarray images. This section
includes some discussion of the steps involved in a microarray experiment. Section
3 discusses the issues involved in assessing differential gene expression between two
conditions at a time. There is an extensive literature on this topic. Our presentation
is divided into sections on normalization, gene variability and models for classifying
the genes as differentially expressed or not. We include a brief explanation of mixture
models, and some discussion of different decision rules used to choose the lists of genes
considered to be differentially expressed. In Section 4 we present a range of models
for grouping gene expression profiles, which are vectors of gene expression over several
different experimental conditions, for ordered samples (e.g. time-course data) and for
samples with no ordering. Finally Section 5 reviews the current work on multivariate
methods for finding subsets of genes that can predict and classify phenotypes. We focus
on discussing variable selection methods that have been used to find, for example, so-
called ‘gene signature’ of different subtypes of disease, as well as Bayesian shrinkage
methods. In both cases, the emphasis is on parsimony of the multivariate model in
order to enhance interpretation. Inference in Bayesian models is made in either an
empirical or fully Bayesian framework. In the case of fully Bayesian models, Markov
Chain Monte Carlo (MCMC) is usually used to estimate the posterior distribution of
the model. We do not go into details of these procedures, except in the case of non-
standard algorithms. Table 1 gives URLs for software for the models discussed in this
chapter.

A note on notation: we use xg... for gene expression measures used as data in Sections
3 and onward, rather than the more usual yg.... This is to allow the standard formulation
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for the variable selection models in Section 5, where y stands for the outcome and x
stands for the variables (here genes). Throughout the chapter, p stands for the number
of genes and n stands for the number of samples or experimental conditions.

2. Extracting Signal from Observed Intensities

The output from a microarray experiment starts with the image of an array (see hsg006).
This image must be gridded and segmented into spots, which are the basis for inference
about the sequences present in the sample of interest. There has been some work on
Bayesian methods for image analysis (see for example Ceccarelli & Antoniol (2006);
Gottardo et al. (2006a) and references therein). This work is beyond the scope of this
chapter. The methods we describe in this section start with an intensity measurement
for each pixel on an array, found from the image analysis, and use these to construct a
summary measure of the amount of RNA present in the sample for each gene of interest.

There are two main types of microarrays in use, spotted or cDNA arrays, which are
usually two-color, and oligonucleotide arrays, which are one-color. Spotted arrays are
microscopic slides onto which long strands of cDNA are fixed in a regular grid layout.
Each “spot” on the array will then contain millions of copies of the same (known)
sequence of cDNA (called probes). One sequence corresponds to one gene, or EST
(expressed sequence tag). In order to find out what sequences are present in a sample
of mRNA, a sample of cDNA (the target) is produced from the mRNA by reverse
transcription, and fluorescently labeled. This sample is introduced onto the array,
where hybridization reactions take place between sequences of cDNA which match in
the sample and on the array. The array is then washed to remove target cDNA which
has not hybridized to the array, and scanned to detect the fluorescent labels of the
cDNA strands which have hybridized. For two-color arrays, two samples of cDNA,
labeled with dyes of two different frequencies (Cy3 and Cy5), are put on the array. The
two samples are usually from different mRNA samples, enabling the concentrations of
particular sequences to be compared between the two samples.

There are two particularly important statistical issues arising from the process of
the microarray experiment. Firstly the Cy3 dye tends to appear brighter than the Cy5,
due to differences in the reaction with the cDNA and different responses to the laser
used in the scanning process. This leads to the so-called dye effect. In addition, the
known cDNA sequences are printed onto the array using a number of spotting pins. The
different pins may deliver slightly different amounts of cDNA to the array, thus there
can be a systematic effect between spots printed with different pins. This is known as
the print-tip effect.

Oligonucleotide arrays work in a similar way. There are three main differences from
spotted arrays (from a data analysis point of view), the first being that just one sample
is hybridized to each array, and thus only one dye is used, so there is no dye effect.
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The second is that the same printing head is used for all spots, thus there is no print-
tip effect. The third difference is that the probe sequences fixed to oligonucleotide
arrays are shorter than those used in spotted arrays. For this reason, several probes (of
different sequences) are used to detect one gene or EST. Spots on the array come in
pairs: one containing the “perfect match” probe (PM) and an adjacent spot containing
the “mis-match” probe (MM). The perfect match probe is a strand of cDNA which has
the sequence of interest. The mis-match probe has the same sequence except for the
central nucleotide, which is different.

The reason for this is to provide a measure of cross-hybridization: target cDNA
having a similar but not identical sequence to the PM probe may hybridize to the PM,
contaminating the signal. The idea with the MM probe is that these mis-matched
target cDNAs would also hybridize to the MM probe, but the true matches to the PM
would only hybridize to the PM and not to the MM. Thus the amount of cDNA with
the exact same sequence as the PM could be estimated by subtracting the MM signal
from the PM signal. In reality, target cDNA with exact match to PM also hybridizes
partially to the MM, so estimating the correct amount is a complicated process (see
Section 2.2).

2.1 Spotted cDNA Arrays

Most work with data from spotted arrays takes the ratio of the Cy3 and Cy5 in-
tensities as a measure of the relative expression of each gene in the two RNA samples.
These can be used in a fairly straightforward way to compare gene expression under dif-
ferent experimental conditions. Care must be taken to account for the dye and print-tip
effects. These effects are often included as part of the model for differential expression,
as will be seen in Section 3.1.

Here we discuss a Bayesian model developed by Frigessi et al. (2005) for obtaining
estimates of concentrations of RNA from two-color arrays. This model includes the
dye and print-tip effects, along with other aspects of the experimental process, usually
absorbed into empirical normalization methods. The idea is to follow through the
process which the RNA molecules undergo in order to be detected as hybridized to the
array. The steps in this process are modeled with a hierarchical model.

The principal data used in the model are the intensity measurements in each pixel j
on each array a. These are denoted Li,a

j,s, where s labels spots to which the pixel belongs
and i labels the particular RNA sample hybridized to the array. The background
intensity is assumed to have been subtracted as part of the image analysis. The quantity
of interest to estimate is the concentration of RNA (in molecules per unit weight) for
gene g in sample i, denoted by K i

g. The main steps relating this concentration to the
observed intensities are hybridization, washing and scanning.

In order to model the scanning process, consider the number of molecules J i,a
s from

sample i left on spot s after hybridization and washing. The observations which con-
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tribute directly to J i,a
s are the intensities for the pixels in the spots corresponding to

that gene; for a given sample and array Li,a
j,s ∝ J i,a

s /na
s where na

s is the number of pix-

els in spot s. The constant of proportionality is 2fdye.PMT i,a
αdye, where PMT i,a is the

voltage used in scanning and fdye is the scanner amplification factor, both known. The
factor αdye accounts for the dye effect (this is estimated as part of the model). With
this expected relation between intensity and number of molecules on a spot in place,
the intensity measurements are modeled as coming from a Normal distribution,

Li,a
j,s ∼ N(2fdye.PMT i,a

αdyeJ
i,a
s /na

s , (σ
i,a
s )2). (1)

The variance (σi,a
s )2 is estimated from the sample variance of the intensities, and treated

as fixed in the analysis.
In the second level of the hierarchical model, the prior for J i,a

s depends on the con-
centrations K i

g(s), where g(s) is the gene corresponding to spot s, and also on other pa-
rameters for various effects encountered in the hybridization step. This step is treated
as a selection process where each molecule of gene g(s) has an equal chance of hy-
bridizing to and remaining on spot s. Thus the number of molecules has a Binomial
distribution:

J i,a
s ∼ Bin(cna

sq
i,aKi

g(s), p
i,a
s ) (2)

where qi,a is the total weight of sample i and c is a hybridization factor (estimated in a
calibration experiment). The probability of hybridization pi,a

s has several contributions:

pi,a
s = L−1(γ0 + γg(s,a) + γP i + βXa

s ) (3)

P i is a measure of the purity of sample i, and Xa
s contains the covariates for spot s

on array a: probe length, probe quality, print-tip and array. Various link functions are
used for L. To ensure identifiability, several arrays must be analyzed together. The
main object of inference is Ki

g and a purposely designed MCMC algorithm is used to
get posterior samples.

2.2 Oligonucleotide Arrays

In contrast to cDNA arrays, the intensity measurements for spots on oligonucleotide
arrays cannot be combined in a simple manner to form gene expression measurements.
The simplest way to use the PM and MM measurements would be to use PM-MM as
a measure of expression. However there is a problem with this, as very often the MM
intensity is larger than the PM intensity (see Figure 1, top row). There has been much
work in the microarray literature on methods to deal with this phenomenon. Here we
present Bayesian models developed to model the PM and MM intensities in order to
produce measures of gene expression.
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Hein et al. (2005) present a fully Bayesian hierarchical model, estimated by MCMC,
for obtaining gene expression measures for each gene in each experimental condition.
If there are replicate samples for a condition (including biological replicates) the model
produces an estimate for that condition, rather than separate estimates for each repli-
cate. On the other hand, by using the variability of the probe sets for each gene, the
model can be used with a single array for each condition and meaningful comparison
between conditions without any replicates can be achieved (Hein & Richardson, 2006).

The data used for the model in Hein et al. (2005) are the perfect and mis-match
intensities for probe-pair j of gene g in replicate r of condition c, denoted by PMgjcr

and MMgjcr. Each c, r pair corresponds to one physical array. The intensity observed
at a PM probe is assumed to be the result of hybridization partly of fragments that
perfectly match the probe (specific hybridization, signal: Sgjcr) and partly by fragments
that do not perfectly match the probe (non-specific hybridization: Hgjcr). A similar
pattern is assumed for the MM probe, with only a fraction φ of the signal Sgjcr binding.
Both specific and non-specific hybridization are estimated separately for each gene and
probe. To account for the possibility of the MM being bigger than the PM the model
includes an additive error on the normal scale.

PMgjcr ∼ N(Sgjcr + Hgjcr, τ
2
cr)

MMgjcr ∼ N(φSgjcr + Hgjcr, τ
2
cr) (4)

At the next level of the model estimates for the specific hybridization for each gene
in each condition µgc are obtained, averaging across probes and replicates. These are the
final measures of interest. The non-specific hybridization is modeled with an array-wide
distribution (indexed by c and r).

log(Sgjcr + 1) ∼ TN(µgc, σ
2
gc)

log(Hgjcr + 1) ∼ TN(λcr, η
2
cr) (5)

Here TN stands for the Normal distribution truncated at zero on the left. This and
the shifted log function allow the hybridization signals to be zero.

Array-specific parameters (those indexed by c, r) are given independent priors. The
gene-specific variances σ2

gc are modeled exchangeably, to share information across the
genes and stabilize the variance estimates.

Hein et al. (2005) fit this model to the GeneLogic spike-in data set at
http://www.genelogic.com/media/studies/index.cfm. This is a widely-used data set
consisting of gene expression measurements for replicate samples of cRNA from an
acute myeloid leukemia (AML) tumor cell line, with eleven exogenous cRNAs spiked
into each sample at a different known concentration in each sample. Each sample was
hybridized on one array, thus all measurements for spike in genes on a particular array
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correspond to the same cRNA concentration. The top row of Figure 1 shows the PM
and MM measurements for four of the spiked in genes (all from the same array). It can
be seen that the measurements of different probes within a gene vary widely, due to
the different sequences being detected.

The lower panel shows results for the same four genes, when the model is fit to the
single array. The plots show the posterior estimates of Sgjcr compared with log(PMgjcr−
MMgjcr). It can be seen that the posterior estimates get more precise for larger PM-
MM, i.e. for probes with high specific hybridization, and consequently that the posterior
credibility intervals for the µc are reduced. For probes with large MM, the estimates of
Sgjcr are drawn towards those for the rest of the probes for that gene.

3. Differential Expression

One of the most widely-studied problems in microarray analysis is that of differential
gene expression between two experimental conditions, for example between knock-out
and wildtype animals, or between cases and controls. Most work in this area starts with
the gene expression measures for each gene on each array, or the log ratios of expression
under two conditions. Expression measures have been observed to have increasing
variability with increasing value (Schadt et al., 2000), so they are often modeled on the
log scale. Sometimes a shifted log transform is used, as for example in Gottardo et al.
(2006b). Chapter hsg006 discusses many transformation used in the literature.

Many models that have been developed for differential expression can be written
as a linear model for the log expression level xgcr for gene g, condition c = 1, 2 and
replicate array r:

xgcr = µgc + γcr + εgcr (6)

where µgc represents the level of expression of gene g for condition c, γcr is a normal-
ization term for the array containing the replicate r sample of condition c, and εgcr is
the residual.

Not all models we discuss can be fitted exactly into this format, for example Newton
et al. (2004) and Kendziorski et al. (2003) use the Gamma distribution to model gene
variability and so their models do not quite fit into the linear framework. However, they
still involve parameters corresponding to the same biological quantities. In addition,
the vast majority of models can be fitted into the linear framework, and thus it is useful
to give these equations, in an attempt to clarify where models differ or otherwise. We
will indicate in the text where models do not use the linear formulation (6).

The parameters of interest are the µgc. Before we discuss how these are modeled,
we look at the normalization and error terms.
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3.1 Normalization

Microarray data show systematic differences between expression levels found on
different arrays (e.g. Schadt et al., 2000). Some of these differences are due to dye
and print-tip effects discussed in Section 2.1. This may be taken into account when
analysing data at lower levels, but generally empirical differences between arrays are
still found for the gene expression values. Often the systematic effect is such that there
is non-linear relationship between the expression levels on different arrays.

Much work has been done in the classical statistical literature on different methods
of accounting for these systematic non-linear differences (normalizing). These usually
involve a transformation of the data before it is analysed with another method. Most
work on Bayesian models for gene expression has also assumed that this process has been
done beforehand. Bayesian models incorporating normalization include those proposed
by Parmigiani et al. (2002) and Gottardo et al. (2006b). Both of these include a constant
term in a linear model, estimated in a fully Bayesian manner.

Bhattacharjee et al. (2004) and Lewin et al. (2006) model normalization as a non-
linear function of expression level. Bhattacharjee et al. (2004) use a normalization term
γgcr which is modeled as a piece-wise linear function of gene expression level. Due to
marginalization over the joint posterior, posterior estimates of γgcr will be reasonably
smooth functions of expression level.

Lewin et al. (2006) propose a model starting with that given in Equation 6, but
for which the normalization term has an additional gene index: γgcr = f(µgc) where
the function f is a quadratic spline. They show that transforming the data first rather
than modelling the normalization simultaneously with the other unknown quantities
can introduce bias, as the gene expression levels µgc have to be estimated and thus have
variability, as in measurement error problems (Carroll et al., 1995). Figure 2 shows the
posterior mean array effects γgcr as a function of expression level for a group of three
arrays hybridized to cDNA from wildtype mice, as presented in Lewin et al. (2006).

3.2 Gene variability

There are many sources of variation in gene expression data. It is possible to put
replicate RNA samples from the same individual on different microarrays, but this is
usually considered unnecessary as it has been observed that these so-called technical
replicates show very high correlation. More usually different arrays are hybridized with
samples taken from different individuals. Thus the variability incorporated in the error
term εgcr in Equation 6 represents the biological variability. It is generally accepted
that different genes show different levels of biological variability, thus parameters in the
distributions for the errors will depend on the gene index.

Several Bayesian models in the literature assume Normal errors (Lönnstedt & Speed,
2003; Baldi & Long, 2001; Bhattacharjee et al., 2004; Lewin et al., 2006). Gottardo
et al. (2006c) use a t-distribution (bi-variate for cDNA data) to accommodate more

9



outlying data points. Newton et al. (2001) and Newton et al. (2004) give the data a
Gamma likelihood rather than the lognormal implied by Equation 6. Simple model-
checking techniques suggest the Gamma and lognormal families are equally suitable for
gene expression data.

Since the numbers of individuals for each experimental condition is often small, in-
dependent estimates of gene variance parameters would be unstable. Therefore gene
variances σ2

gc are usually shrunk, by assuming exchangeability across genes (and some-
times conditions). Both empirical Bayes (Lönnstedt & Speed, 2003) and fully Bayesian
methods (Lewin et al., 2006; Gottardo et al., 2006c) relying on MCMC algorithms for
inference have been used. Rather than allowing a separate variance for each gene,
Bhattacharjee et al. (2004) allow gene variances to take one of three values, estimated
as part of the model, as an alternative way of sharing information across genes. Baldi
& Long (2001) allow gene variances to depend on expression level, by making the vari-
ances exchangeable amongst genes with similar expression levels (defined by a window
on the expression level) and estimating these using empirical Bayes methods.

3.3 Expression levels

It is useful to write the expression levels in two experimental conditions as

µg1 = αg − δg/2

µg2 = αg + δg/2 (7)

where αg represents the overall expression level for gene g and δg represents the log
differential expression. For two-color arrays the data can be given as log fold changes
between the conditions (the data is paired) and in that case there is no αg parameter.
When the data is given separately for the two conditions, αg must be modeled. It is
usually treated as a fixed effect, so no information is shared between genes for this
parameter.

The fold change parameter δg can also be given an unstructured prior (e.g Baldi &
Long, 2001; Bhattacharjee et al., 2004; Lewin et al., 2006), however many people choose
to use mixture models to classify genes as differentially expressed or not. Usually this
means putting a mixture prior on some measure of the difference between expression
levels in the two experimental conditions. The mixture models can be classified into
two groups: those which put a mixture prior on the model parameter δg, and those
which model the data directly as a mixture. These are not intrinsically different, as the
parameters δg could be integrated out to give a mixture model on the data, but it is
convenient to describe the models separately.

A finite mixture distribution for a quantity ∆g is a weighted sum of probability
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distributions ,

∆g ∼
K−1∑

k=0

wkfk(φk) (8)

where the weights sum to one (
∑K−1

k=0 wk = 1). Each mixture component has a certain
distribution fk, with parameters φk. The weight wk represents the probability of ∆g

being assigned to mixture component k. In the context of differential expression, most
mixture models used consist of two components (K = 2), one of which (f0) can be
thought of as representing the “null hypothesis” of there being no differential expres-
sion. The second component corresponds to the alternative hypothesis that there is
differential expression. Of course it is not necessary to see the model in terms of hy-
pothesis testing; in the Bayesian framework it is a straightforward procedure to classify
each gene into one or other of the mixture components. This is usually done using the
posterior probability of component membership (see Section 3.4 for details).

One of the earliest mixture models used in gene expression analysis was that of
Efron et al. (2001). In this model ∆g in Equation 8 is a regularized t-statistic tg, one
for each gene.

tg ∼ w0f0 + w1f1 (9)

The densities of the mixture components are estimated non-parametrically using stan-
dard kernel density procedures. Regularized t-statistics are calculated using expression
data from the same experimental condition, to provide an estimate of the null com-
ponent f0. An estimate of w0 (which represents the proportion of genes in the null,
or not differentially expressed) is obtained using Empirical Bayes methods. The whole
mixture distribution (w0f0 + w1f1) can be estimated using all the tg. Thus the second
component f1 can be inferred.

A fully Bayesian version of this model has been discussed by Do et al. (2005). In this
work, the framework of Dirichlet Process Mixtures (DPM) is used to formulate a prior
probability model for the distributions f0 and f1. A DPM model, characterized by a base
measure G∗, a scalar parameter α, and a mixing kernel to be specified, is one of the most
popular nonparametric Bayesian models in reason of the simplicity of its representation
and MCMC implementation (Escobar & West, 1995; Walker et al., 1999). Do et al.
(2005) choose base measures G∗

0 ∼ N(0, τ 2) and G∗
1 ∼ 1

2
N(−b, τ 2)+ 1

2
N(b, τ 2) for f0 and

f1 respectively and Gaussian mixing kernels with common variance parameter σ2. The
specification of G∗

1 reflects the prior belief that DE in either direction is equally likely,
in the absence of more specific prior information. Using the stick-breaking construction
of DP (Sethurman, 1994), leads to a useful representation of fk, k = 0, 1 as an infinite
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mixture of normals:

fk =
∞∑

h=1

phkN(µhk, σ
2)

with µhk
i.i.d∼ G∗

k, k = 0, 1 and the weights following the stick-breaking structure: phk =

Uh

∏
j<h(1−Uj) with Uh

i.i.d∼ Beta(1, α). In Do et al. (2005) all the model parameters are

given hyperprior distributions, conjugate inverse Gamma for τ 2 and σ2 and conjugate
normal for b, α is fixed at 1 and w0 is given either a Beta prior or a Uniform prior away
from 0. As in Efron et al. (2001), within-condition data differences are used to estimate
f0, while between-condition differences are modeled as arising from the mixture defined
in (9). Figure 3 shows posterior estimates of f0, f1 and f ≡ w0f0 + w1f1 for the Alon
colon cancer data set (Alon et al., 1999) as analyzed in Do et al. (2005). This is a data
set of gene expression measurements for 2000 genes in 62 tissue samples (40 tumours
and 22 normal samples). The density f1 is bimodal, showing that there are genes
which are expressed more in tumours than normal samples, and genes expressed more
in normal samples. The estimate of the proportion of differentially expressed genes was
around 1% in this data set. The performance of this model will depend on the number
of within-replicate differences that are used to calibrate f0 and on the information
introduced in the hyperprior specification. When there are only a few replicates, the
mixture might be close to non-identifiability.

Broët et al. (2002) suggest another model using a mixture at the data level to classify
genes. Here the data is first transformed with a linear model to produce normalized log
fold changes dg. The dg are modeled using a fully Bayesian mixture of Normals which
includes estimation of the proportion of differentially expressed genes (the weights in
the mixture). The number of components in the mixture K is not restricted to 2. There
is still just one component representing the null, but several representing differentially
expressed genes. This allows grouping of genes into different levels of differential expres-
sion. In fact K is not fixed in this model, but estimated, in a fully Bayesian way, using
the split and merge algorithm for mixtures with an unknown number of components
introduced in Richardson & Green (1997).

When mixture distributions are put on parameters of the model (prior) rather than
on the data (likelihood), care must be taken to ensure identifiability of the parameters
of the mixture components. A common choice is to make the null component a point
mass. This corresponds to testing the null hypothesis δg = 0 versus the two-sided
alternative.

Lönnstedt & Speed (2003), Lin et al. (2003) and Smyth (2004) use mixture priors
on the parameter δg representing difference between conditions. Lönnstedt & Speed
(2003) use a mixture of a point mass at zero and a conjugate Normal prior on the
δg. Smyth (2004) uses the same mixture model, but on data which has first been
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transformed using a linear model similar to that in Equation 6 but using a robust
estimation method, to obtain log fold changes. These two models are estimated using
Empirical Bayes methods. The proportion of true nulls is not estimated, thus these
methods produce a ranking of the genes rather than an actual estimate of how many
genes are differentially expressed.

Rather than putting the mixture directly on the δg, Newton et al. (2004) propose a
mixture prior on the pair of parameters µg1, µg2. Their likelihood is Gamma, but the µgc

still represent mean expression in the two conditions. One component of the mixture has
µg1 = µg2 drawn from one distribution, the other has µg1, µg2 drawn from two separate
distributions. These distributions are estimated non-parametrically, estimated using an
EM algorithm. Gottardo et al. (2006c) has a similar mixture on the pair µg1, µg2, this
time using Normal priors, and a fully Bayesian estimation method, including estimating
the proportion of differentially expressed genes. Reilly et al. (2003) has a model with
a similar structure, but in addition incorporates prior information about certain genes
being controls (and therefore not differentially expressed).

An early model for differential expression which does not employ a mixture model on
the difference between the two conditions is that of Ibrahim et al. (2002). They model
the data in each condition as coming from a mixture of a point mass and a log Normal
distribution, the point mass representing the threshold for genes to be un-expressed. A
measure for differential expression is formed from the ratio of expectation of expression
in the two conditions.

As a final comment, note that finding differentially expressed genes can also be
cast in a multivariate framework. This approach was adopted by Ishwaran & Rao
(2003) who use multivariate shrinkage effected via a continuous version of the spike
and slab variable selection model (see Section 5.1 for a discussion of variable selection
approaches). They propose to detect differentially expressed genes by formulating the
problem as a linear regression. They then use a multivariate shrinkage approach to find
posterior means of the differentially expressed parameters and finally they compare
these values to percentiles of a standard normal distribution (with a scaling coefficient)
in order to select differentially expressed genes.

3.4 Classifying genes as differentially expressed

In differential expression problems, the aim is to produce a list of genes which are
considered to be differentially expressed between the different experimental conditions.
A decision rule is used to classify genes as either differentially expressed (DE) or not
(non-DE). In Bayesian models this will either be based on the value of some model
parameter (usually the posterior mean), or else on posterior probabilities of some cri-
terion in the model, for example of being classified into a certain mixture component
or of some parameter being above a certain threshold.
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Models with mixture priors for fold changes
In the fully Bayesian mixture models described above, decisions are usually made

using the posterior probabilities of a gene being allocated to the different mixture
components. The mixture example given in Equation 8 can also be written as

∆g|zg ∼ wzgfzg(φzg)

P(zg = k) = wk (10)

where the zg are allocation parameters which label the mixture component to which gene
g is assigned. The posterior probability of gene g being in component k is P(zg = k|x).

Defining a loss function enables one to form the decision rule. First, denote the
set of genes declared to be DE by S1 and the set of genes called non-DE by S0. In
the two-component mixture models, since there are two possible classifications for each
gene, there are two possible penalties for mis-classification, one for false positives, one
for false negatives. If the ratio of these two penalties is λ, the same for all genes, the
loss function is proportional to

L ∝
∑
g∈S0

P(zg 6= 0|x) + λ
∑
g∈S1

P(zg = 0|x) (11)

This is minimized by defining S0 as the set of genes for which P(zg = 0|x) ≥ 1/(1 + λ),
i.e. genes are classified using a threshold on the posterior probabilities of classification
in the mixture. Müller et al. (2007) discuss different possible loss functions and the
decision rules they lead to.

The posterior probabilities can also be used to obtain an estimate of the false dis-
covery rate, which is the ratio of false positives to total declared positives:

ˆFDR =
1

|S1|
∑
g∈S1

P(zg = 0|x) (12)

(see Newton et al., 2004; Broët et al., 2004; Müller et al., 2007). An estimate of
the false non-discovery rate (ratio of false negatives to total negatives) can be defined
similarly. The false discovery rate is widely used in classical statistical analysis of
gene expression data (see hsg006 and hsg007 ). It is useful to be able to give this
estimate when comparing with different analysis methods and it has generally be found
in simulation studies that (12) gives quite accurate estimates of the true FDR.

For mixtures of more than two components, one may consider different rules. The
most obvious would be to assign genes to the component with highest probability, i.e.
gene g is assigned to component k = maxk′P(zg = k′|x). However when there are
more than two components, this can lead to genes being declared DE (in a particular
component) when their posterior probability of being classified into that component is
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low. For example with 4 components, a gene which has almost equal probability of being
classified in all components can be declared DE (into the best component for that gene)
with posterior probability of 0.26 of being in the that component. An alternative, more
conservative, suggestion would be to classify into one of the components representing
DE only those genes for which the corresponding posterior probability of belonging to
that component is above a set threshold, e.g. 50% or higher, and otherwise the genes
are classified into the null. Again, evaluating the associated FDR of such rules will
guide the choice of appropriate thresholds. Such a rule was used in a related context,
that of modelling DNA copy number changes (gains or losses) in comparative genomic
hybridization experiments by a spatially structured mixture model with 3 components
(gain, loss, normal) in Broët & Richardson (2006). For typical noise to signal ratio, the
authors found that classifying into the gain or loss components DNA sequences with
a posterior probability above 0.8 gave good operational characteristics in this context,
whereas the Bayes rule had poorer performance.

When mixture models are estimated using Empirical Bayes methods, without an
estimate of the number of genes in the null, the posterior probability of being allocated
to the null can only be estimated up to a constant. In this situation the posterior odds
ratio can be used to rank genes:

Oddsg =
P(zg = 0|x)

P(zg 6= 0|x)
(13)

(Lönnstedt & Speed, 2003; Smyth, 2004).

Models with non-structured priors on fold change parameters
In the non-mixture methods in the previous section, a variety of measures of dif-

ferential expression are used to classify genes. Baldi & Long (2001) and Smyth (2004)
propose so-called regularized or moderated t-statistics. These consist of the Bayesian
posterior mean estimate of the log fold change parameter, divided by a shrunken esti-
mate of standard deviation. This shrunken estimate is the square root of the posterior
mean of the variance parameter, shrinkage being provided by the exchangeable prior
on the variances estimated in an EB framework.

The model used by Bhattacharjee et al. (2004) allows gene variances to take one of
three values (a mixture on gene variability). These can be used to classify genes into
groups based on their variability within and between tissues.

With a non-informative prior on the δg, Lewin et al. (2006) proposed a decision rule
based on a threshold δcut set according to a biologically interesting level of differential
expression. Differential expression is defined as δg being greater than δcut, correspond-
ing to an interval null hypothesis with the interval fixed a priori. The decision rule
is that genes are declared to be differentially expressed if the posterior probability

15



P(|δg| > δcut|x) is greater than some threshold probability (e.g. 0.5). This rule com-
bines statistical and biological significance.

When the interval for an interval null hypothesis is required not to be fixed a priori,
Bochkina & Richardson (2006) suggest two types of decision rule based on tail posterior
probabilities. They define a loss function

L ∝
∑
g∈S0

I[|δg| > θ(σg)|x] + λ
∑
g∈S1

I[|δg| ≤ θ(σg)|x] (14)

They consider two possibilities for θ: firstly θ ∝ σg, which leads to a decision rule
where S0 is defined as the group of genes with P(|δg/σg| ≤ Tα|x) ≥ 1/(1 + λ), which is
an analogue of a t-statistic procedure. The second choice is with constant θ, in which
case the decision rule defines S0 as genes with P(|δg| ≤ δα

g |x) ≥ 1/(1 + λ). A heuristic
argument is used to choose the thresholds Tα and δα

g ; these are defined as the percentiles
of the distribution of δg/σg or δg found by hypothetically conditioning on x̄g2.− x̄g1. = 0
in the model, e.g. f(δg|x̄g2.− x̄g1. = 0, s2

g). Bochkina & Richardson (2006) also consider
a one-sided rule with threshold zero. This is shown to be equivalent to the moderated
t-statistic of Smyth (2004) (when the same variance model is used).

3.5 Multi-class data

A number of models have been proposed which extend the methods used for dif-
ferential expression in two conditions to compare expression in several conditions or
classes. These might be used, for example, to compare the actions of several drugs
and a control sample simultaneously, or to compare different tumor samples. As with
the mixture models described previously, it can be useful to describe the classification
of genes in terms of null and alternative hypotheses. There are a number of different
choices of alternative hypothesis for multi-class data. Here we discuss models which
use hypotheses of the type “the gene is differentially expressed (or not) in at least one
condition”, without distinguishing which condition it is. Section 4 deals with models
which classify genes by clustering them according to the pattern of expression across
the experimental conditions, thus distinguishing between being differentially expressed
in condition 4 only and being differentially expressed in condition 2 only, for example.
An intermediate approach is taken by Ishwaran & Rao (2005b) who, similarly to their
work on differential expression, formulate the multi-class analysis as a multivariate re-
gression problem, use variable selection and shrinkage to output lists of significant genes
between any two conditions and then use these lists to highlight patterns of interest
between the conditions.

A common formulation is the classical ANOVA model, which tests the null hypoth-
esis “the gene has the same expression in all conditions” versus the alternative “the
gene has differential expression in at least one condition”. This is used in a Bayesian
framework by Broët et al. (2004), who start with an F-statistic for each gene. These
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F-statistics are transformed to the Normal scale and modeled with a two-component
mixture to classify genes as differentially expressed or not. The null component is a
standard Normal, while the alternative component is modeled semi-parametrically with
a mixture of Normals. This type of formulation is also suggested by Smyth (2004), who
uses moderated F-statistics, using shrunken estimates of variances as with the moder-
ated t-statistics (see Section 3.4).

A slightly different formulation is considered by Bochkina & Richardson (2006), who
use alternative hypotheses such as “the gene is DE in a set of pair-wise comparisons
of interest” versus a compound null which is the opposite of this, i.e. genes are only
selected to be of interest if they show changes in a predefined set of comparisons of
interest.

4. Clustering Gene Expression Profiles

When gene expression is measured in several conditions simultaneously, the data is in
the form of a matrix xgc with the index c taking more than 2 values, c = 1, ..., n. In
this case, the interest focuses on finding groups of genes which have the same pattern
of co-expression across the conditions. These patterns are called expression profiles.

4.1 Un-ordered samples

The models in this section are designed for experiments in which there is no special
ordering of the different conditions, for example several tumor samples. Most commonly,
this sort of data has no replicate measurements, or at any rate samples from different
individuals are not treated as replicates. When replicates under different conditions
have been measured, the modeling of the profiles can take this into account to improve
the classification, (Medvedovic et al., 2004; Dahl, 2006). Even with no replicates, the
different samples can however be used together to estimate gene variances, even though
the samples have different expression levels.

Most of these models start with a similar linear model to that in Equation 6. It is
convenient to write the gene profile as a vector:

~xg = ~µg + εg (15)

where the vectors ~xg and ~µg are of length n. The normalization term is omitted here,
as most published Bayesian models do not include this term (instead requiring the data
to have been transformed in a suitable way beforehand).

Choices for the distribution used to model gene variability are similar to those
discussed in Section 3.2. Here our focus is on modeling the mean expression levels
in the different groups. As with the differential expression models, a mixture model
can be put on the ~µg parameters, or on the data directly. The correspondence with
null and alternative hypotheses can also be carried forward to this type of model,
though now there may be several alternatives. The null is “no difference in expression
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across conditions”. The alternatives are usually all possible patterns showing some
difference, though Kendziorski et al. (2003) allow the number of alternative patterns to
be restricted, which is a useful feature for large numbers of experimental conditions.

The probability of expression (POE) model of Parmigiani et al. (2002) and Garrett-
Mayer & Scharpf (2006) is a simple 3-components mixture model on the data. Its aim
is to estimate allocation probabilities for each gene and condition to one of 3 groups:
reference, under- and over-expressed. In its simplest form, biological information is
available to classify some indices c as giving ‘normal’ i.e. reference values. Refer-
ence values are modeled as arising from a normal distribution with additive gene plus
condition global effects, whereas the under and over components are assumed to be
uniformly left or right shifted from the reference mean with a range to be estimated.
All unknown parameters are given prior distribution and the mixture is estimated in
a fully Bayesian way via MCMC algorithms, (Parmigiani et al., 2002). The output of
this mixture model is a simple transformation of the data matrix into a probability
scale based on an underlying assumption that the information in the expression values
is essentially categorical. In contrast to other work described below, clustering of the
probabilities to define interesting subgroups of gene is not attempted within the model,
but the authors suggest to use data mining tools at a second stage.

Kendziorski et al. (2003), Gottardo et al. (2006c) and House et al. (2006) suggest
models for clustering gene expression profiles using a mixture model on the parame-
ters ~µg. These models are extensions of those used in differential expression, and are
formulated via combinations of point masses and continuous distributions for the var-
ious hypotheses/clusters. Kendziorski et al. (2003) extend the model of Newton et al.
(2004), described in the differential expression section, to a mixture model on gene
expression profiles. As an example, when there are three experimental conditions, the
gene expression parameters are µg1, µg2, µg3. There are 5 possible patterns for a profile
over 3 conditions: one pattern with µg1 = µg2 = µg3, three patterns with two of the µgc

equal to each other and the third drawn from a separate distribution, and one pattern
where all three µgc are drawn from different distributions. Their implementation allows
the restriction to a few interesting patterns, as the number of possible patterns increases
rapidly with the number of conditions. One version of the model of Kendziorski et al.
(2003) is an extension of that used in Newton et al. (2004) where the likelihood is a
Gamma and the mean expression parameters have Gamma priors. They also look at a
version with log Normal likelihood and Normal priors. Gottardo et al. (2006c) propose
a similar model for profiles, implemented for three experimental conditions. This model
is an extension of their differential expression model mentioned in Section 3.3, using
log Normal likelihood and Normal priors. They automatically consider all possible pat-
terns. House et al. (2006) give another similar model, this time implemented in five
conditions.
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Vogl et al. (2005) gives an example of a mixture model on the data (see Section 3.3
for more explanation on mixture models). In this case ~µg is replaced by ~µk in Equation
15, where k labels the mixture component and the mixture allocation parameter zg is
equal to k. This model assumes a Normal distribution for each mixture component, with
variance σ2

k, i.e. equal variance for all genes in the same component. Note that gene
variances integrated over different allocations will not be equal for all genes, as different
genes will be allocated to different combinations of mixture components. The prior used
in Vogl et al. (2005) for the ~µk is a conjugate prior, with independence between different
experimental conditions. The number of clusters k = 1, ..., K is estimated in the model
along the lines of Richardson & Green (1997). This model does not in fact automatically
include the null cluster of equal expression in all conditions. Figure 4 shows some of
the gene profiles found by Vogl et al. (2005) for the Spellman cell-cycle data (Spellman
et al., 1998). Different clusters of genes peak at different phases of the cell cycle.

Rather than using finite mixture models for clustering profiles, a number of authors,
(Medvedovic et al., 2004; Dahl, 2006; Lau & Green, 2006a,b), have recently developed
fully Bayesian profile clustering, based on Dirichlet process mixtures (DPM). In this
set-up, it is assumed that gene profiles characterized by parameters ~µg, g = 1, . . . , p
are clustered according to a tractable distribution on partitions corresponding to the
Dirichlet process and that within each cluster, the profiles follow the same distribu-
tion. DPM is a popular formulation for implementing clustering and partitions models.
Indeed, besides their representation as infinite mixtures (see Section 3.3), DP mod-
els with baseline distribution G∗ and scalar α can be equivalently defined via a prior
structure on the space C of partitions of p items (here the genes) into K clusters,
{1, . . . , p} =

⋃K
k=1 Ck, with pk items in cluster Ck, a joint distribution on the partition

given by:

p(C1, C2, . . . , CK) =
αKΓ(α)

∏K
k=1(pk − 1)!

Γ(α + p)
,

associated i.i.d. draws of ~µ∗k from G∗, k = 1, . . . , K, and setting ~µg = ~µ∗k if g ∈ Ck.
Authors differ in their choice of specification of the base measure distribution, and

whether they choose a fully conjugate specification between the mixture kernels for the
data part of the model and the base measure. In Lau & Green (2006b), the standard
DPM approach is extended by replacing the DP model by a variant in which there is
a background cluster not exchangeable with the others and in which there is a differ-
ent prior distribution of the cluster-specific parameters. Fully conjugate specification
(Dahl, 2006; Lau & Green, 2006a,b) is computationally advantageous as all the cluster
parameters can be integrated out and efficient MCMC algorithms can be used that
update solely the partition. Within cluster posterior distributions for the parameters
are then sampled, conditional on the partition.

In general, drawing inference from the complex posterior clustering distribution is
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not straightforward and as the number of partitions grows rapidly with increasing p,
recording the partition with the highest posterior probability does not guarantee that
it is close to the posterior mode. Medvedovic et al. (2004) suggest to compute the
pairwise posterior probabilities for two genes to be in the same cluster and then to
postprocess this output by traditional hierarchical clustering algorithms. Dahl (2006)
proposes to choose among all the observed clustering, the clustering that minimizes, in
the least square sense, the distance between its 0-1 association matrix and the estimated
pairwise posterior probabilities. Lau & Green (2006a) formulate a Bayesian solution
to define the optimal clustering that optimizes a posterior expected loss function. This
loss function penalizes pairs that are clustered together when they should not be and
vice-versa. They derive an efficient approximation to define the optimal clustering.
Heard et al. (2006a) propose an hierarchical algorithm that approximates the posterior
mode in a Bayesian clustering model without requiring MCMC computations (see next
section for details).

It is possible to apply the models presented above to time-course or dose-response
data, where there is an ordering of the samples, for example in Medvedovic et al. (2004)
and Vogl et al. (2005). In those examples the un-ordered samples models work well.
However, for data with less pronounced patterns it is better to use models which take
into account the ordering information, such as those presented in the next section.

4.2 Ordered samples

Models for ordered samples also usually start with a linear model,

xgt = µgt + εgt (16)

where again we omit the normalization term, as this is usually assumed to be already
taken care of. We use the index t for the ordered data-points. For convenience we will
refer to these as time-points, though they could be any ordered data. This type of data
tends not to have repeated measurements for the same time point. Because of this, it
is not possible to estimate separate µgt for each gene and perform clustering on these.
The mixture prior for clustering must be at the data level, i.e. µgt is replaced by µkt,
where k labels the mixture component to which gene g is allocated.

Two broad classes of models for dependence between time-points have been proposed
in the literature. One class models the parameter at any given time t in terms of the
previous time-point or several time-points. The other uses parametric basis functions
to give a shape to the parameters across the time-points. Note also that the formulation
presented in (Lau & Green, 2006a,b) allows the structuring of ~µg as a linear function
of a fixed set of covariates, in particular time (or function thereof), thus can be used
effectively for both ordered and un-ordered samples.

Ramoni et al. (2002) implement the first class of model, using an auto-regressive
(AR) prior on the µkt (thus µkt is regressed on µk,t−1, ..., µk,t−q, where q is the order of the
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AR prior). The AR prior assumes a stationary time-series, so will not be appropriate
for many types of microarray data, especially as data is often measured at irregular
time-points. The clustering used in this method is hierarchical and agglomerative, that
is the posterior space of clusters is not explored fully, but a path is taken through the
space in a similar way to classical hierarchical clustering methods. The scoring function
used to decide which clusters to merge is based on ratios of posterior probabilities of
the original and merged partitions.

A more flexible model in this class is given in Wakefield et al. (2003) and Zhou &
Wakefield (2006), who use a random walk model on the µkt:

µkt = µk,t−1 + ut (17)

where ut ∼ N(0, |Xt − Xt−1|τ 2) and Xt is the value of time at the tth time-point.
Thus the closer adjacent time-points are, the more dependent they are. This model
is fitted in a fully Bayesian way, with the number of clusters estimated as part of the
model. Inference is made on the basis of posterior probability of cluster membership,
with particular attention given to finding pairs of genes with high probability of being
allocated to the same cluster. This is to find genes which are co-expressed.

A model in the second class is proposed by Heard et al. (2006a). This uses splines
(with degree to be chosen) as basis functions for the trajectories of the genes over time,

µkt =
∑

h

Xthβhk (18)

where Xth is the (fixed) value of the h-th basis function at time t and βhk is the coefficient
of the h-th basis function for cluster k. By using a fully conjugate specification, the
joint distribution of the data conditional on any partition can be computed in closed
form, hence the posterior probability of any partition can also be evaluated. The
clustering method exploits this and proceeds by an agglomerative algorithm similar to
that used by Ramoni et al. (2002), in order to find the partition that approximates
the posterior mode. Heard et al. (2006b) extend this model to time-series taken in a
number of different conditions, and estimate covariance between time-series in different
conditions.

Wakefield et al. (2003) also fit a basis function model, for periodic data.

µgt = Agsin(wXt) + Bgcos(wXt) (19)

applied to a cell-cycle data set.

5. Multivariate gene selection models

In the previous sections, we have discussed gene expression association studies where
the aim is to find gene expression changes that relate to biological outcomes by compar-
ing, for each gene, their differential expression under different conditions, and profile
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clustering where the interest is to find patterns of co-expressed genes across differ-
ent experimental conditions, in order to understand pathways. In this section we are
concerned with a different but related problem, that of using gene expression for phe-
notype prediction. Our aim here is to build multivariate molecular profiles based on
combination of the expression of a subset of genes which can characterize different
phenotypes (e.g. clinical outcomes). We are thus in the framework of multivariate re-
gression and classification models. The specific difficulty of genomic applications is that
there are typically many more covariates than samples: the so-called “large p (thou-
sands of genes), small n (50 to 100 samples) regression paradigm”, and consequently
standard regression/discrimination techniques do not apply. Further, the interest is in
finding parsimonious regression models that include only small subsets of genes so that
biological interpretation and validation can be attempted.

Bayesian approaches to multivariate gene selection have broadly followed two related
lines of development: (i) regression methods with covariate selection, (ii) multivariate
regression with shrinkage priors that favor sparsity. We shall review these in turn.
Mostly, we shall discuss so-called supervised classification situations where the char-
acteristic of the samples that one wants to predict are known. Variable selection can
also be performed simultaneously with the task of uncovering clustering patterns of the
samples, in an unsupervised manner.

5.1 Variable selection approach

Suppose that we have potentially p predictor variables, each measured on a set of
n samples: xgc with g = 1, . . . , p and c = 1, . . . , n. Thus for each predictor variable
g, we have a vector of n measurements ~xg. For the present the outcome variable,
yc, c = 1, . . . , n can be continuous (e.g. measuring a biomarker) or categorical (e.g.
encoding a cancer subtype) and we denote by β, the vector of regression parameters
linking X and Y, (these being the matrices for predictors and outcomes respectively).
Thus βg is the regression parameter corresponding to the covariate ~xg.

Bayesian variable selection (BVS) is usually implemented through a hierarchical
model, where all possible 2p models are represented by a p-dimensional indicator vari-
able γ:

γg =

{
1 variable (gene) g is included
0 variable (gene) g is excluded

A prior on the model space can be specified via a prior p(γ). A common choice is
p(γ) =

∏p
g=1 πγg(1− π)1−γg , and by choosing π small, the number of variables selected

can be controlled. Alternatively, a Beta prior distribution can be assumed for π and
the sparsity of the regression only controlled by the choice of prior for the βs.

This generic approach to variable selection, often referred to as the spike and slab
approach, was taken in Mitchell & Beauchamp (1988), George & McCulloch (1993),
George & McCulloch (1997) and in many subsequent papers (Clyde, 1999; Brown et al.,
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1998, 2002). Much of the work on BVS was developed for linear models where yc is
continous. In this context, authors differ in the choice of the prior distribution for β, in
particular whether the components of β are treated as independent or not, and whether
a conjugate formulation is chosen so that the prior on β includes the noise parameter of
the linear model. Typically, the prior for β is formulated via a mixture. Most models
define a point mass at zero for βg when γg = 0, while when γg = 1, large variances
are favored with a distribution to be specified. Ishwaran & Rao (2003, 2005a,b) use
a modified spike and slab model that assumes a continuous bimodal prior for βg, a
scale mixture of two centered normals, one having a small variance. They show that
this prior is useful in gene expression, see Sections 3.3 and 3.5. In the common case
of a prior for βg with a point mass at zero, for ease of notation, we shall denote by
βγ all nonzero elements of β and correspondingly, we denote by Xγ, the columns of X
corresponding to those elements of γ equal to 1.

A standard choice of prior for βγ is the so-called g-prior, where βγ ∼ N(0, c(Xγ
TXγ)

−1),
where c is a positive scale factor to be chosen. Similarly, if independent normals are
specified for the components of β, again a scalar has to be chosen. These choices in-
fluence the sparsity of the final regression model (Chipman et al. (2001)) and a full
understanding of this aspect is the object of current research.

In the microarray context, because we are in a “large p, small n” situation, the poste-
rior distribution over the model space of variable dimensions is multi-modal. Moreover,
full posterior inference for the entire model space of size 2p is not feasible if p is larger
than about 20. Hence, Markov chain Monte Carlo methods are rather used as stochastic
search algorithms with the aim to quickly find many regions of high posterior proba-
bility. The Markov chain needs to move quickly around the support of the posterior
distribution and as usual, it is useful to integrate out as many parameters as possible.
For this reason, conjugate settings have been favored in the linear model. When propos-
ing changes to γ, a key question is how to propose sensible changes to the regression
vector β. The current parameter values may be of little relevance in this case and joint
moves which update simultaneously γ and β produce an improvement (Holmes & Held,
2006).

Much of the application of variable selection in microarrays has concerned binary
or categorical variables rather than the linear model. Typically, samples are classified
as good or poor prognosis or linked to different clinical sub entities, like subtypes of
cancer. There is no immediate conjugate formulation of Bayesian categorical regression,
but following the approach of Albert & Chib (1993), probit regression can be efficiently
implemented through the use of latent auxiliary variables which allows integration of
the regression coefficients in the full conditional distribution of the indicator variables γ.
This approach was taken by Lee et al. (2003) and Sha et al. (2004). These authors have
implemented different MCMC schemes for updating γ (Gibbs sampling for Lee et al.
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(2003) which will tend to be slow mixing, Metropolis with add/delete/swap moves for
Sha et al. (2004)). In a recent paper, Holmes & Held (2006) have proposed an auxiliary
variable formulation of the logistic model which allows, in a similar way to the probit
model, integration of the regression coefficients when updating the indicator variables,
thus improving mixing. For both probit and logistic regression models, the calibration
of the prior distribution of the regression coefficients again influences the outcome of
the variable selection process. In this respect, the logistic regression, which is more
commonly used for binary regression, is easier to calibrate than the probit model as it
has heavier tails and so exhibits less sensitivity.

In general, MCMC variable selection algorithms in high dimension are difficult to
implement due to slow convergence. Recent developments in stochastic simulation
algorithms, such as population-based reversible jump MCMC and the use of parallel
tempered chains seem promising, (Jasra et al., 2006). An alternative search algorithm,
the shotgun stochastic search method, which is close in spirit to MCMC but aims to
search rapidly for the most probable models has been recently proposed by Hans et al.
(2007). Note that it is a discussion point whether to report models with high posterior
probabilities and their associated variables, or to extract marginal information about
the selected variables by looking at their marginal posterior probabilities of inclusion,
Sha et al. (2004).

We end this section by referring to the recent work of Tadesse et al. (2005) and
Kim et al. (2006) where variable selection and clustering of the samples are performed
simultaneously. This joint modeling is motivated by the remark that using a high di-
mensional vector of gene expression to uncover clusters among the samples might not
be effective and on the contrary can tend to mask existing structure, while a more par-
simonious model that selects a only a small subset of covariates to inform the clustering
is more easily interpretable. Such joint modeling was discussed in a Bayesian context
in two related papers, which differ in their model for the clustering structure. Tadesse
et al. (2005) formulate their clustering structure using a finite mixture of multivariate
normals with a variable number of components and use reversible jump techniques to
explore different structures, whilst Kim et al. (2006) exploit the computational benefits
of DP mixtures.

5.2 Bayesian shrinkage with sparsity priors

An alternative approach to BVS for selecting a small number of regressors is to
use a hierarchical formulation of the regression problem with a prior on the regression
coefficients that favors sparsity. Effectively, a large number of regression coefficients are
essentially set to zero by having very small posterior values. Note that different choices
of prior and hierarchical structures can be interpreted as different choice of penalties
if one adopts the point of view of penalized likelihood, framework into which ridge
regression and other shrinkage methods can be cast.
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A general formulation that encompasses many of the models which have been pro-
posed is that of scale mixture of normals. In this formulation, the regression coefficients
βg are given independent normal priors: βg ∼ N(0, τg), and the variances τg are them-
selves given a hyperprior distribution: τg ∼ p(τg). Choice of this prior distribution leads
to different kind of sparsity for the βs, but all priors used have in common the desirable
feature that the integrated prior for β is a heavy tail distribution with a peak around
zero, thus favoring only a small number to be substantially different from zero. Note
that a Laplace prior for βg which corresponds to a Lasso type penalization can also
be written as a scale mixture of normals with p(τg) being a one parameter exponential
distribution, (Griffin & Brown, 2005).

Bae & Mallick (2004) implement three different choices of prior for τg in the context
of gene expression studies: an inverse gamma with 2 hyper parameters that are chosen
in order to favor large variances, a Laplace prior with one parameter and a Jeffreys
improper prior (which implies an improper prior of the form 1

βg
for βg). They found

that Jeffreys prior induces more sparseness than the Laplace prior and yields good
performance. There is currently a lot of interest in using general families of scale
mixtures and in calibrating them for efficient inference in high dimensional set-ups
(Griffin & Brown, 2005).

Sparsity priors can also be used in the context of latent factor models (West, 2003;
Lucas et al., 2006). Modeling high dimensional data via latent factor models is a
powerful dimension reduction technique that allows the identification of patterns of
covariation among genes. In their application of factor models to the analysis of gene
expression data, West (2003) and Lucas et al. (2006) further structure the factor loading
matrix to encourage sparsity via a mixture prior with point mass at zero. A biological
interpretation of the factors as potentially representing biological pathways is then
derived by examining the list of genes most weighted on each factor.
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Broët, P., Lewin, A., Richardson, S., Dalmasso, C., and Magdelenat, H. (2004). A mix-
ture model based strategy for selecting sets of genes in multiclass response microarray
experiments. Bioinformatics 20(16), 2562–2571.
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Figure 1. Upper panel: probe set response for four genes from an oligonucleotide
microarray. Each probe set consists of 20 probe pairs. Solid lines show PM-MM,
dashed lines show PM, dotted lines show MM. Lower panel: summaries of posterior
distributions related to expression of the four genes, from the model in Hein et al.
(2005). The 95% equal-tailed credibility intervals of the Sgjcr are shown as horizontal
lines (shifted vertically) and should be read off the x -axis. The bold line shows the 95%
equal-tailed credibility interval for µgc. Circles show the observed log(PM-MM) values
(plotted at zero when MM > PM). Curves show TN(µ̂gc, σ̂

2
gc), with µ̂gc and σ̂2

gc equal
to the posterior means. Figure reproduced with permission from Hein et al. (2005).
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Figure 2. Array effects as a function of expression level, for a wildtype mouse ex-
pression data set of 3 arrays, as presented in Lewin et al. (2006). Each plot shows the
array effect from 1 array (curve) with the data residuals from the mean across arrays
(points).
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Figure 3. Illustration of the posterior distributions for the mixture densities in the Do
et al. (2005) model, found for the Alon et al. (1999) cancer data set. The first three
panels show f0, f1 and f ; the fourth panel shows all three. Each curve is a draw from
the posterior distribution of the relevant mixture component. Figure courtesy of Peter
Müller.
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Figure 4. Clusters of cell-cycle regulated genes found in the Spellman et al. (1998)
data using the model of Vogl et al. (2005). Figure reproduced with permission from
Vogl et al. (2005).
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