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We thank the discussants for their stimulating comments and interesting com-
parison with alternative models and algorithms. We will briefly consider their points
in turn.

Extension of the hierarchically related sparse regression model

We agree that in our set-up, dependence between the responses Y beyond that
induced by the hierarchical structure of Ω is not accounted for. The framework
of Seemingly Unrelated Regressions (SUR) is indeed more general and applicable
for moderate q, but we suspect that it would quickly become unfeasible for the
large size of q expected in eQTL types of experiments. In the paper of Banerjee et
al. (2008), even though the implementation of SUR method for QTL of multiple
traits is discussed in general terms, the simulation study only involves q = 2. Our
own experience of sparse regression with a multiple Gaussian response model also
confirms our observation that modelling the covariance between the responses is
computationally demanding and can be unstable. In Petretto et al. (2010), the ESS
algorithm is applied to a multiple response model (gene expression in four tissues)
under the restrictive assumption that the selection indicators are the same for all
the responses. In the new associations that are illustrated, the correlation between
the responses is entirely explained by a pair of markers.

In this work, we were primarily focussed on considering a large number of re-
sponses, and we did not pursue the SUR direction. On the other hand, there are
different extensions of our set-up that can account for correlation between responses.
In the spirit of the recent work on multivariate Sparse Partial Least Squares (SPLS)
of Chun and Keleş (2009), a preclustering of the responses could be performed and
the likelihood in equation (1) extended to include a random effect common to all
the responses in each cluster. This would allow most of the ESS computations and
efficiency of parameter integration to go through. A drawback of this approach,
shared by the sparse SPLS method, is to rely on a preprocessing clustering step to
capture adequately the residual correlation between the responses. Alternatively,
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the response groups could be defined through the use of external information, for
example pathway information, which could be introduced in the specification of the
covariance between the responses. This may link our model to the paper presented
in this volume by Stigo and Vannucci (2010). To enhance interpretability of the
results, external information can also be included in the prior model of the selection
probabilities. As queried by the discussants, it would be straightforward to modify
the specification of model (iii) to include the use of external information from bio-
logical predictors, Zj = (zjs, 1 ≤ s ≤ S), for example by generalising model (iii) to
ωkj = ωk × ρj × exp(φTZj), 0 ≤ ωkj ≤ 1.

Finally, we want to stress that in our paper, the dependency induced by the
hierarchical structure of model (ii) or (iii) is helpful for recovery of the true asso-
ciations as well as for uncovering the dependence structures of the responses that
are linked to the same predictors. To partially answer the discussants’ comments
on this point we compared the outputs of model (i) where there is no hierarchical
structure and model (iii) for the Sim5 set-up. Figure 1 shows typical comparative
results, displayed here for one replicate on Sim5. The correlation between the Yk

induced by β
γk
, the non-zero elements of β

k
, is displayed on the left hand side.

Figure 1 shows that the hierarchical column structure of model (iii) encapsulated
by ρj leads to a clearer recovery of the 10 blocks of responses that were simulated.
Figure 2 highlights nicely that in the case of model (iii), within each block, the
marginal posterior probabilities of inclusion are highly correlated and homogeneous,
whereas there is considerably more heterogeneity within blocks for model (i). Hence
in a partial answer to the discussant query, we see that the hierarchical structure of
model (iii) is able to capture well the dependence between the Yk induced by β

γk
.

Alternative priors

We agree that the choice of priors for the regression coefficients has important con-
sequences on the variable selection performance. The generalised g-prior of Gupta
and Ibrahim (2007, 2009) has two fixed hyperparameters, one similar to our shrink-
age coefficient g and an additional one λ, in the line of ridge regression. How to fix
these hyper-parameters and sensitivity to this choice (choice which is not explicited
here) is a delicate issue that led us to put a prior on g instead. We note that in
Gupta and Ibrahim (2009), comparison between this prior and g-prior is focussed
on predictive performance where, indeed, ridge penalisation would be expected to
help. Our focus here is on selection of a small number of important predictors and
it is not clear to us what benefits the generalised g-prior would have in this context.

The Laplace prior within a Bayesian shrinkage perspective as proposed by Bae
and Mallick (2004) and used in the discussion is an interesting computationally
efficient alternative to variable selection. It would be useful to be able to compare,
besides the R2, its ability to recover the true associated variables and associated
errors. Recent work on Bayesian sparse signal models by Carvalho et al. (2010)
propose a different prior, the horseshoe prior, based on Cauchy tails rather than
exponential tails for the variances, which is shown to have good theoretical properties
and the ability to adapt to different sparsity patterns. Investigating and comparing
variable selection with such approaches is an interesting avenue for future research
and we thank the discussants for pointing us in that direction.
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Alternative algorithms

We welcome the connection made between the adaptive scan and a stochastic ap-
proximation of the selection probabilities. We agree that the choice of the decreasing
sequence will be important and that more work needs to be done in investigating
suitable schemes and their comparative performance. Stochastic approximation is
also behind the alternative algorithm to ESS proposed by the discussants. We are
intrigued to know more about the implementation of SAMC in this challenging
high-dimensional model selection case. How were the partitions defined? What
specific MH moves were used to update with the target distribution fw(x) ? What
importance has the parameter ∆? The model selection examples analysed in the
referenced papers are of much smaller size and we are intrigued by the performance
of the mSAMC sampler on the simulated data sets. The R2 reported are extremely
high, particularly for Example 2 which has the feature of a contaminated model.
With the data simulated in Bottolo and Richardson (2010), we do not reach R2

higher than 0.81 (ranging between 0.70 and 0.81 in the simulated replicates) when
inputting the true variables in the linear model. Hence, we suspect that the data
simulated by Mallick et al. was not comparable to that used in ESS. Moreover, the
distribution of model size reported in Table 1 of the discussion indicates that the
models found by SAMC have typically a much smaller size than that of the true
model, seemingly contradicting the high R2 reported in Table 2 for both examples.

We agree with the discussants that the question of how to compare different
algorithms is complex and deserves careful consideration. In our article, we were
attentive to design a number of scenarios with the dual purpose of (i) evaluating
the performance in a range of situations as well as (ii) providing fair ground for
comparing to other approaches by including scenarios that were tailored to other
approaches. For lack of space, we only reported and compared the algorithms on
a limited number of features, emphasizing mostly the hot spot detection perfor-
mance as this was the main focus of our hierarchical related sparse regression struc-
ture, keeping a more comprehensive comparison for follow-up work. In Bottolo and
Richardson (2010), we compared ESS with Shotgun Stochastic Search (Hans et al.,
2007) with respect to marginal posterior probability of inclusion for the predictors,
R2 of best model visited, average R2 for the 1,000 top (non-unique) models ranked
by their posterior probability and computation time. In a more comprehensive com-
parison, it would be interesting to report additionally, for example, several distance
measures between the simulated and estimated βs, median model size and median
0–1 “test” error (i.e. based on the number of variables which differ between the true
ones), following the comparison strategy used by Fan et al. (2009) to investigate
several methods for feature selection in ultra high dimension. Trying to characterise
the complexity of the algorithms to be compared is also an important consideration,
and more work needs to be done along this line.
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Figure 1: Pairwise correlation of Y for one replicate of Sim5 (left), marginal
posterior probability of inclusion for the independence model (i)(middle) and

marginal posterior probability of inclusion for the multiplicative model (iii) (right).
The 10 blocks of responses induced by the structure of the simulated βs are indicated
on the left G1 to G10.
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Figure 2: Empirical correlation between the marginal posterior probabilities of

inclusion for the 10 blocks of responses in Sim5. Comparison of output of the
independence model (i) and the multiplicative model (iii).


