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SUMMARY

Standard regression analyses are often plagued with problems encountered when one tries to make mean-

ingful inference going beyond main effects, using datasets that contain dozens of variables that are poten-

tially correlated. This situation arises, for example, in epidemiology where surveys or study questionnaires

consisting of a large number of questions, yield a potentially unwieldy set of inter-related data from which

teasing out the effect of multiple covariates is difficult. We propose a method that addresses these problems

for categorical covariates by using, as its basic unit of inference, a profile, formed from a sequence of co-

variate values. These covariate profiles are clustered into groups and associated via a regression model to

a relevant outcome. The Bayesian clustering aspect of the proposed modeling framework has a number of

advantages over traditional clustering approaches in that it allows the number of groups to vary, uncovers

subgroups and examines their association with an outcome of interest and fits the model as a unit, allowing

an individual’s outcome to potentially influence cluster membership. The method is demonstrated with an
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analysis of survey data obtained from The National Survey of Children’s Health (NSCH). The approach

has been implemented using the standard Bayesian modeling software, WinBUGS, with code provided

in the supplementary material. Further, interpretation of partitions of the data is helped by a number of

post-processing tools that we have developed.
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1. INTRODUCTION

A common problem encountered in a regression setting is the difficulty involved in making meaningful

inference from data containing a large number of inter-related explanatory variables, such as data arising

from detailed questionnaires. The covariates in these datasets are often confounded (aliased) with each

other, meaning that the association between the outcome and one specific covariate, xp, may achieve a

high level of statistical significance by itself, but not in the presence of many other related covariates.

Additionally, the effect of a particular covariate on the outcome might only be revealed in the presence of

other covariates. Therefore, the overall pattern of joint effects may be elusive, and hard to capture by tradi-

tional analyses that include main effects and interactions of increasing order, as the model space becomes

soon unwieldy and power to find any effects beyond simple two-way interactions quickly vanishes.

One way to deal with the above mentioned problems is to adopt a more global point of view, where

inference is based on clusters representing covariate patterns as opposed to individual risk factors. This

general approach has been suggested in epidemiology in recently published commentaries as a possible

method for examining aging profiles (Wang, 2006) and dietary patterns (Tucker, 2007; van Dam, 2005).

In that spirit, we use as the main unit of inference an individual’s covariate profile, where a profile consists

of a particular sequence of categorical covariate values, xi = (xi1, xi2, . . . , xip), and associate the entire
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profile pattern with the outcome.

The idea of utilizing clustering to profile correlated data is not new, and many techniques have been

proposed (see, for example, Forgy, 1965; Hartigan and Wong, 1979). For instance, an analysis of dietary

data using Latent Class Analysis (LCA) in a frequentist context was demonstrated by Patterson et al.

(2002). Recent developments in LCA techniques to analyze correlated data can be found in Desantis et al.

(2008, 2009). However, the modeling framework introduced here combines many recent developments

and offers a number of advantages over traditional approaches. First, it utilizes a Bayesian mixture-model

framework (Diebolt and Robert, 1994; Richardson and Green, 1997) that takes into account the uncer-

tainty associated with cluster assignments, i.e. it employs model-based stochastic clustering as opposed to

traditional distance-metric “hard” clustering. Appropriately, the model is fitted using Markov chain Monte

Carlo (MCMC) sampling methods (see, for example, Gilks et al., 1996), and outputs a different clustering

or partition of the data at each iteration of the sampler, thus coherently propagating uncertainty. Second,

the method allows the number of clusters to be variable. Third, the method links clusters to an outcome of

interest via a regression model so that the outcome and the clusters mutually inform each other. Finally,

the method allows the analyst to examine the “best” or most typical partition of the data obtained from the

algorithm (as described in Dahl, 2006), and then utilizes model-averaging techniques to assess, using the

posterior output obtained from the sampler, the uncertainly associated with subgroups contained within

this “best” partition. This last point is especially important, since Bayesian clustering models produce rich

output and interpretation of results from such models can be challenging.

In this manuscript, we first describe the method with special emphasis paid to interpretation of model

output. We then provide a brief simulation section demonstrating the performance of the model both in the

presence and absence of a well-defined signal in the data. We then demonstrate the utility of the method
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on an analysis of an epidemiological dataset obtained from the National Survey of Children’s Health

(NSCH) (www.childhealthdata.org). Finally we discuss model limitations and outline areas of

future research.

2. METHODS

Our approach consists of an assignment sub-model, which assigns individual profiles to clusters, and a

disease sub-model, which links clusters of profiles to an outcome of interest via a regression model. As

is typical with Bayesian methods, both sub-models will be fitted jointly using Markov chain Monte Carlo

methods (Gilks et al., 1996), so, for example, allocation of individual profiles to clusters will depend on

both the covariate data in the assignment sub-model, and the outcome information in the disease sub-

model. Both these sub-models will be addressed in turn.

2.1 Assignment sub-model

We first construct an allocation sub-model of the probability that an individual is assigned to a particular

cluster. The basic model we use to cluster profiles is a standard discrete mixture model, the kind described

in Jain and Neal (2004) or Neal (2000). Our mixture model incorporates a Dirichlet process prior on the

mixing distribution. The use of the Dirichlet process in statistical modelling has been thoroughly examined

in Walker et al. (1999). A good overview of Dirichlet process mixture models can be found in West et al.

(1994), while a biomedical example of their application can be found in Mueller and Rosner (1997). For

further background information regarding mixture models with Dirichlet process priors, see Escobar and

West (1995); Green and Richardson (2001); MacEachern and Muller (1998); Neal (2000).

Mathematically, we denote, for individual i, a covariate profile as, xi = (xi1, xi2, . . . , xiP ). Profiles
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are clustered into groups, and an allocation variable, zi = c, indicates the cth cluster to which individual,

i, belongs. We restrict our approach to categorical covariates with Mp categories for the pth covariate. We

denote with ψc the probability of assignment to the cth cluster and let φp
c(x) denote the probability that the

pth covariate in cluster c is equal to x. In other words, for each cluster, c, the parameters, φp
c , p = 1, . . . , P

define the prototypical profile for that cluster. Our basic mixture model for assignment is,

Pr(xi) =
C∑

c=1

Pr(zc = c)
P∏

p=1

Pr(xip|zc = c)

=
C∑

c=1

ψc

P∏
p=1

φp
zi

(xip).

(2.1)

Note that as is typical with discrete mixture models, covariates are assumed to be independent conditional

on cluster assignment. Unconditionally, they are of course dependent as a profile’s overall covariate pattern

will affect the cluster to which the profile is assigned, and thus the probability that a particular covariate

takes on a certain value. In this manuscript, we only analyze datasets with binary covariates, and so we

use the notation φp
c to indicate the probability that a variable belonging to cluster, c, takes a value of 1.

The mixture weights corresponding to a maximum of C clusters, denoted asψ = (ψc, c = 1, . . . , C),

will be modeled according to a “stick-breaking” prior (Ishwaran and James, 2001; Ohlssen et al., 2007)

on the mixture weights, ψ, using the following construction. We define a series of independent random

variables, V1, V2, . . . , VC−1, each having distribution Vc ∼ Beta(1, α). This generative process is referred

to as a stick-breaking formulation since one can think of V1 as representing the breakage of a stick of

length 1, leaving a remainder of (1−V1), and then a proportion V2 begin broken off leaving (1−V1)(1−

V2), etc. Since we have little a priori information regarding the specification of α, we place a uniform

prior on the (0.3, 10) interval. This parameter is important, since it determines the degree of clustering that

takes place, and we want this to be driven by the data as opposed to prior beliefs. An interval bounded on



6 MOLITOR AND OTHERS

the left by 0.3 was suggested in Ohlssen et al. (2007), so that potential computational traps in WinBUGS

(Spiegelhalter et al., 2003) are avoided. In our analyses, the sampled values for α were always well away

from the chosen bounds of this prior specification.

By considering a maximum number of clusters, C, we have approximated the infinite cluster model

with a finite one. We need to set C to a large enough value so that the approximation is good, however,

we want to choose a value that is not too large to avoid having to estimate a large number of unnecessary

cluster parameters and allocation probabilities for very small clusters. To obtain some insight on what an

appropriate value for C may be, we proceed along the lines of Ohlssen et al. (2007), where C is set to a

value so that the probability assigned to ψC is small. To make sure that we allow for enough clusters we

always specify C = 20. This corresponds to a relatively large value of α = 3.6, while posterior values

of α obtained from analyses performed in this manuscript were generally in the range of α ∈ (0.5, 2.5).

Thus, the upper bound chosen imposes little structure in practise.

2.2 Disease sub-model

The previously described assignment model clusters individuals into groups and these cluster assignments

can be simultaneously used as categorical predictors of an outcome. As above, we define allocation vari-

ables for each individual as zi = c, c = 1, . . . , C, which indicates the cth cluster to which individual

i belongs. The cth cluster is assigned a parameter that measures its influence on the outcome (on the

logistic scale) denoted as θc. Since it is possible for a particular θc to be associated with an empty clus-

ter, these parameters must be assigned a proper prior. Therefore we assign to each θc a proper t density

function with 7 degrees of freedom and scale 2.5 as a prior, as discussed in Gelman et al. (2008), which

corresponds to the baseline case of one-half of a success and one-half of a failure for a single binomial
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trial with probability p = logit−1(θc). Below, we build a disease model which links the clusters with the

outcome.

The general form of our disease model not only quantifies the association between the health outcome

and the cluster profiles, but also allows for a number of fixed covariates to be included, as would be

needed in order to adjust for known confounders. We denote, for individual i, i = 1, . . . , N , confounding

covariates wi, (wip, p = 1, . . . , P ). Given a binary outcome, yi, and a corresponding probability pi =

Pr(yi = 1), our disease model is then,

logit(pi) = θzi + βwi, (2.2)

where logit denotes the standard logistic link function, and β = (β1, . . . , βP ) denotes the regression

parameter coefficients associated with the confounding covariates wi = (wi1, . . . , wiP ). Note that in

this model, θzi is an individual-level intercept term which can be interpreted as the baseline log odds

for individual i, which is the log odds obtained when all confounders are set to their “reference” value

of zero. These individual-level intercepts are identifiable because they are smoothed via the clustering

modeled defined in equation (2.1). Due to the clustering aspect of the model, at each iteration of the

sampler individuals assigned to the same cluster will be assigned the same baseline log odds. However,

each individual will have its own unique distribution for θzi
when the sampler is complete. Further, for

a prospective study, we can calculate an individual-level baseline risk for disease for individual, i, as

pzi
= exp(θzi

)/[1 + exp(θzi
)].

The model is fitted via Markov chain Monte Carlo (MCMC) methods (Gilks et al., 1996), where, at

each iteration of the MCMC sampler, individual profiles are assigned to clusters, and each individual is as-

signed the risk associated with the cluster to which the individual belongs. Code for the software package

WinBUGS (Spiegelhalter et al., 2003), used to perform the MCMC parameter estimation, is provided in
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Section 1 of the supplementary material (available at Biostatistics online, http://www.biostatistics.oxfordjournals.org).

3. EXAMINING CLUSTERING OUTPUT

Our model implementation allows the number of groups to change from iteration to iteration of the sam-

pler, and this added flexibility leads to a rich output that requires careful interpretation. Below we develop

methods to process the output of our method to make useful, interpretable inference. There are two main

areas of interest, namely (i) find the partition (grouping) that is most supported by the data, and (ii) assess

uncertainty associated with subgroups of this best partition in a manner which exploits the MCMC output

of the sampler. We discuss these issues in turn.

3.1 Finding the best partition

We wish to find the general, “typical” way in which the stochastic algorithm groups subjects into clusters.

This problem has been addressed in the literature by many authors in the context of mixture models; see,

for example, Dahl (2006); Medvedovic and Sivaganesan (2002). The starting point is to construct, at each

iteration of the sampler, a score matrix with each element of the matrix set equal to 1 if individuals i

and j belong to the same cluster, and zero otherwise. At the end of the estimation process, a probability

matrix, S, is formed by averaging the score matrices obtained at each iteration, so element Sij denotes the

probability that individuals i and j are assigned to the same cluster. The task is then to find the partition,

zbest, that best represents the final average probability matrix, S. Dahl (2006) suggests an approach to

finding the best partition by choosing among all the partitions generated by the sampler the one which

minimizes the least-squared distance to the matrix S. We have found this approach useful, however, it

requires one to choose one of the observed partitions as optimal, resulting in a choice that is somewhat
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susceptible to Monte-Carlo error. We find that a more robust approach is to process the similarity matrix,

S, through a deterministic clustering procedure such as the Partitioning Around Medoids (PAM) (Kauf-

man and Rousseeuw, 2005), a deterministic clustering method available in R (R Development Core Team,

2006), where an optimal number of clusters can be chosen by maximizing an associated clustering score.

This clustering method robustly provides a set of assignments of individuals to clusters that can be used to

summarize the pairwise similarity matrix, S. Note that we found that the PAM approach and the approach

of Dahl (2006) often produce very similar results.

3.2 Evaluating uncertainty associated with best partition - a model averaging approach

It is important to examine, with proper consideration for uncertainty, the characteristics associated with

the subgroups present in any chosen partition of the dataset. For clarity, we demonstrate this for the parti-

tion zbest described above, but the concepts that we define apply to any given partition. The basic idea is to

take the partition zbest, representing the “best” clustering of the data, and to examine by post-processing

whether or not the model consistently clusters individuals in a manner similar to zbest. Consistent cluster-

ing will be associated with greater certainty regarding subgroup parameter estimates, such as disease risk,

leading to narrower posterior credible intervals. For example, in a dataset with a strong clustering “signal”,

the model may cluster individuals slightly differently at each iteration of the MCMC sampler, but, due to

the strength of the signal in the data, will generally cluster individuals with a good degree of repeatability

over the iterations of the sampler. However, if the data is “noisy” in that individuals do not tend to group

into clusters, the clustering obtained from the model will tend to be haphazard and highly variable. While

even noisy data will exhibit a “best” clustering, a re-examination of the entire MCMC output will reveal

little confidence in this clustering as it will not generally coincide with the way individuals are clustered
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at each iteration of the sampler. Thus evaluating uncertainty is important for interpretation.

We wish to obtain a distribution of the baseline risks for each subgroup defined by zbest. We do this

by simply computing, at each iteration of the sampler, the average of baseline risks, pzi , for all individuals

within a particular subgroup, k, of the best partition. This average baseline risk for subgroup k is computed

as,

p̄k =
1
nk

∑
i:zbest

i =k

pzi
, (3.3)

where nk denotes the number of individuals in subgroup k of zbest. Note that if zbest coincides with a

partition found at a particular iteration of the sampler, then at this particular iteration, all individuals in a

subgroup of zbest, k, all belong to one cluster, say, cluster, c, and p̄k = pc. However, at other iterations of

the sampler, computation of p̄k allows different subgroups to borrow strength from one another in com-

puting subgroup parameter values. Subgroup parameter values corresponding to covariate probabilities,

φ̄p
k, can be computed similarly as,

φ̄p
k =

1
nk

∑
i:zbest

i =k

φp
zi

. (3.4)

Note that instead of using means in equations (3.3) and (3.4), one could use medians if it is believed that

the posterior distribution of the particular parameter is skewed, which is likely to happen if, for example,

the posterior mass for a particular φ̄p
k is close to zero or one.

For interpretation purposes, we define new centered baseline risk parameters, p̄∗k = p̄k − ¯̄p, so that∑K
k=1 p̄

∗
k = 0, and define similar centered covariate parameters, φ̄p∗

k . These centered parameters are

computed easily at each step of the MCMC sampler via the post-processing steps. A useful summary

derived from the sampled values for the p̄∗k parameters is the probability P (p̄∗k > 0) (for high risk groups)

or P (p̄∗k < 0) (for low risk groups). This probability is calculated by considering the frequency of positive

p̄∗k in the sample. The closer these posterior probabilities are to one, the stronger evidence there is that the
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particular subgroup has high or low risk for disease. Similar summaries are derived for each φ̄p∗
k .

Regardless of the procedure used for choosing zbest, we stress that the groups in this partition, as

any partition, should be post-processed through the output of the sampler in this way in order to properly

assess uncertainty for group parameters. This post-processing approach represents a compromise between

an examination of interpretable “hard groupings”, as exemplified by zbest, and inspection of raw output

from a random mixture model. In other words, while we may choose a “best” partition for interpretation

purposes, we utilize a model averaging approach to process this partition through the rich MCMC output

to characterize its uncertainty.

3.3 Illustration of model performance using simulated data

We performed a small simulation exercise to illustrate the performance of the model both in the presence

of a strong signal and in the case where two of the sub-populations are nearly identical. We first created

a simulated data set of sample size N = 600 using model (2.2) with a binary outcome, y ∈ {0, 1}, and

P = 10 binary covariates, x = (x1, . . . , x10) with no confounders. For purposes of comparison, we report

the cluster parameters, p̄k and φ̄p
k as both the mean and the median of relevant individual-level subgroup

parameters stimulated at each iteration of the sampler. In Table 1 of the supplementary material we give the

simulation parameters and parameter estimates obtained from the MCMC sampler, implementing model

(2.2) with no confounders. We simulated five subgroups with equal prior assignment probabilities, namely

ψ1 = ψ2 = . . . = ψ5 = 1/5, and profiles with clearly distinct patterns. In this case, our method found a

best partition, zbest, with the correct number of subgroups (5) and estimated relevant cluster parameters

well.

Next, in order to examine the situation where the signal was not as strong, we simulated data were
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individuals fell into one of three subgroups with equal probability, however, two of the profiles had very

similar covariate parameter values φ̄p
k, as shown in Table 2 in the Supplementary material. We analysed

the simulated output, again under model (2.2) with no confounders, with results for covariate parameter

estimates displayed in Table 2. Note here that the model only found two subgroups, effectively collapsing

the similar clusters into one and averaging the parameter estimates. This demonstrates that when the

signal is weak, the clustering will effectively group together profiles with similar patterns of covariates.

We investigated a range of simulated cases (results not reported) and found that our model and algorithm

was able to capture adequately main patterns, with a degree of ‘blur’ related to group size. When no true

structure is present in the covariates, typically only one cluster is formed using Dahl’s partition method,

whereas the default of the PAM method can only support a minimum of two clusters. Hence, with very

weak structure, Dahl’s method may be preferable.

4. DATA ANALYSIS - NATIONAL SURVEY OF CHILDREN’S HEALTH

The data analyzed in this section come from The National Survey of Children’s Health (NSCH), a

U.S. national survey that was conducted by telephone in English and Spanish during 2003-2004. This

survey was conducted as part of the Child and Adolescent Health Measurement Initiative (CAHMI)

(www.childhealthdata.org) . CAHMI is a national initiative based out of the Oregon Health and

Science University in the Department of Pediatrics in Portland, OR.

The dataset consists of responses to a wide variety of health-related questions. In addition to the raw

survey questions, an enhanced dataset is available that includes indicators developed by the Data Resource

Center in collaboration with the National Center for Health Statistics and a national expert panel of child

health researchers and policy makers. These indicators are derived variables, often made up of responses
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to two or more related questions. As a way to demonstrate the utility of the approach described in this

manuscript, we analyzed profiles made up of indicators together with a few basic variables. (See Table 3

in the Supplementary material for a detailed description of the data.) We eliminated variables consisting

of follow-up questions. We further eliminated any variables that contained more than 40% missing data.

The data cover children from different age groups in all 50 U.S. states. For our illustrative analysis,

we restricted ourselves to children in the age category of 6 − 17 years, and to children residing in the

state of California. We chose, as an outcome of interest, the mental health of a child, a derived variable

where an observed value of one indicates that at least one child in the household had ongoing emotional,

developmental, or behavioral conditions that required treatment or counseling. Since this outcome was

derived from mental health variables, we eliminated the other mental health variables from the list of

predictors. This reduced our dataset to 34 variables (listed in Table 3 of the Supplementary material).

Including all individuals living in California with a complete profile of these 34 variables, we obtain a

sample size of N = 642. This dataset is sufficient, given space considerations, to demonstrate the utility

of the method, though a more complete analysis, perhaps the subject of a separate substantive paper,

would be desirable.

The data were analyzed using the methods described in this paper and the provided WinBUGS code

(Section 1 of the supplementary material), along with additional post-processing code written in R (R

Development Core Team, 2006). For all real data analyses performed in this paper, the algorithm was run

for a 50, 000 iterations with 10, 000 iterations discarded for burn-in. Visual inspection of posterior time-

series plots for the φ̄’s and p̄’s indicated that the model mixed well, and shorter runs gave very similar

results, indicating that convergence was not an issue.
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4.1 Results

Here, we provide data analysis results from two different approaches; standard logistic regression com-

bined with stepwise variable selection and profile regression.

Logistic Regression

We first examined the data using traditional logistic regression analysis methods implementing the soft-

ware package, R (R Development Core Team, 2006). As a first step, we ran forward stepwise selection,

forcing four variables as confounders, three demographic variables, “young school age”, “non white”

and “male”, as well as “mother” which indicates that mother was the respondent. The stepwise procedure

did produce a final model, however, due to the highly correlated nature of the covariates, R gave warnings

suggesting that the maximum likelihood estimates may not be reliable. Problems associated with using

standard maximum likelihood approaches for analyzing correlated data are well known; see MacLehose

et al. (2007). Therefore, we trimmed the stepwise results by only keeping covariates with p < 0.05 and

then refit the model with results listed in Table 1. We next formed a model consisting of all covariates

and all two-way interaction terms made up of these covariates. Again, a final model was obtained by run-

ning forward selection but as previously, warnings were produced, requiring that we refit the model after

eliminating all non-significant covariates and interactions, with results given in Table 2.

Results displayed in Tables 1 and 2 highlight the influence of family habits and health access on the

risk of mental health problems for the child. Psychological problems of the mother, smoking in the house-

hold and not getting enough sleep were detrimental. With regards to health access, the covariate “medical

home” was highly significant, which is defined by the American Academy of Pediatrics as, “accessible,

continuous, comprehensive, family centered, coordinated, compassionate, and culturally effective” (The
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medical home, 2002). The coefficient for this variable was negative, indicating that children who live in

medical homes have reduced risk of having mental health problems. On the opposite, emergency admis-

sion and spending a lot of time with your personal doctor were, as could be expected, associated with

higher risk. Other variables reducing the risk were the variable “activity”, which is related to physical or

social activity of the child, and “rep-grade” (repeating a grade) which could be both interpreted as indicat-

ing less child stress. Note that the coefficient for language was negative, suggesting that children whose

primary language is not English have, in this data set, lower risk of having mental health problems. This

seemingly contradictory result also comes up in the subsequent profile analyses, and will be discussed

later in Section 4.1.

Profile regression

We analysed the data using the profile approach described in this manuscript, using the model cor-

responding to equation (2.2). As with the standard logistic regression analysis, we included covari-

ates, “young school age”, “non white”, “male” and “mother”, as confounders, and then included all

environmentally-influenced covariates as clustering variables.

The post-processing methods described in Section 3 revealed a “best” partition of six subgroups.

Two of these subgroups were “statistically significant” in that they were associated with high posterior

probabilities that centered values for p̄∗ were away from zero. One of these subgroups was associated

with low mental health risk while the other was associated with high risk. The other four subgroups can

be thought of as “baseline subgroups”, representing different combinations of covariate values associated

with mental health risks closer to average.

The subgroup strongly associated with low mental health risk for the child (p̄∗ = −0.25 and Pr(p̄∗ <

0) = 0.92) is depicted in Figure 1(a). Somewhat surprisingly, this low-risk subgroup contains a large
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number of non-English speaking individuals and is characterized by such seemingly detrimental char-

acteristics as low education, low level of activity, poor maternal health, and poor medical care access.

The low risk of mental health problems associated with this subgroup suggest the possibility that cultural

factors are influencing parents’ attitudes towards mental-health medical care that could potentially induce

under-reporting. This phenomenon has been described in the literature before, for example, Yeh et al.

(2003) reported findings of a study where they found that “ethnic minority youth had higher levels of

unmet need” though it was suggested that certain portions of the sample, such as Latinos “did not want to

use mental health services due to a culturally severe stigma associated with such service use”.

The other statistically significant subgroup is associated with high mental health risk for the child,

with p̄∗ = 0.36 and Pr(p̄∗ > 0) ≈ 1.00, and is depicted in Figure 1(b). This subgroup is mostly

English-speaking and exhibits, as could be expected, a coherent combination of behavioral and medi-

cal problems for the child (high values for such variables as “miss school” and “c asthma”) and maternal

health problems along with high levels of maternal smoking. In Figure 2, we display two English-speaking

subgroups, both of which have risks that are close to the average. Comparing Figure 1(b) with Figures

2(a) and 2(b), we see that these subgroups are associated with “healthier” communities (high values for

“support neighbor”) and family structures (“twoparent”) and are associated with lower levels of maternal

smoking together with lower risk of maternal health problems. Hence the pattern of covariate values are

clearly contrasted with those of Figure 1(b), a subgroup associated with an above average risk of mental

health problems. Note that the two profiles in Figure 2 differ mainly with respect to health access, but that

this is not reflected in any difference in the risks of mental health problems.



Bayesian profile regression 17

5. DISCUSSION

We have described a new analytical strategy which uses a covariate pattern, or profile, as the basic unit

of inference, and examines associations between these profiles and an outcome of interest. Some of the

ingredients of our approach are well established, but, to our knowledge, have not all been put together in

the manner described in this manuscript to create a unified, easy-to-implement method for analyzing data

with a sizable number of interactive variables. Our method groups profiles into clusters, and the number

of clusters is allowed to be random. Post-processing techniques help determine interesting partitions of

the data, and allow the analyst to construct interpretable inference based on these partitions. Parameters

are associated with clusters, and these are used in turn in a regression model of an outcome of interest.

We have used a simple formulation of the mixture model with conditionally independent cluster proba-

bilities for each binary covariate given cluster membership. Extensions of the model to allow for additional

dependence as well inclusion of continuous covariates could be envisioned. Such multilevel extensions

will be the subject of future research. We have focused on epidemiological interpretation of the profiles

in our analysis of the NSCH data, but the method could be applicable for classification problems in other

contexts, for example to characterize deprivation and neighborhood conditions in social studies of small

area characteristics, going beyond the simple summary indices typically used.

The method was implemented using standard Bayesian modeling software (provided), along with

simple post-processing scripts, making the method easy to implement and accessible to a wide audience.

While our WinBUGS implementation makes the method more transparent and user friendly, we have si-

multaneously developed MATLAB code that will allow larger number of variables with several categories

to be efficiently analysed, as well as incorporating model extensions like ordinal covariate modeling using

an underlying probit model. Note also that while we analysed data with full covariate information, missing
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values can be accommodated simply in our Bayesian setting and with our WinBUGS implementation by

denoting each missing value as ‘NA’, causing it to be multiply imputed throughout the sampler using full

model information (see Spiegelhalter et al., 2003).

Our model was formulated in a Dirichlet Process framework allowing for flexibility in the number of

cluster used. However, our general profiling approach, including the post-processing steps incorporating

Bayesian model averaging, could be formulated using mixture weights that follow a different mixture

model, for example a model that allows for a flexible number of clusters estimated via Reversible Jump

Markov chain Monte Carlo (RJMCMC) techniques as in Green and Richardson (2001). The DP approach

has the advantage of being easy to implement in standard Bayesian modeling software such as WinBUGS,

and thus provides a convenient way to model heterogeneity (Ohlssen et al., 2007). However, as the sampler

progresses, clusters containing only one or two individuals are sometimes observed, which could lead to

estimation problems for small sized datasets. The finite mixture model approach does not tend to have this

problem, but requires nonstandard split/merge moves as part of the RJMCMC estimation procedure.

Covariate selection in multivariate regression for health modeling is often problematic because of the

wide range of possible predictors, collinearity and the potential for interactions. The proposed modeling

framework sidesteps this traditional approach and proposes instead to cluster covariates of interest into

subgroups, which can avoid problems of instability in picking out a small number of so-called significant

covariates among a larger set of multicollinear ones as is commonly done in epidemiological practise. In-

deed, using forward selection in our case study was problematic and needed to be followed by somewhat

arbitrary trimming in order to produce interpretable results. Of course, more sophisticated statistical ap-

proaches could be employed to stabilize multivariate regression (MacLehose et al., 2007). Alternatively,

one could utilize the Localized Regression techniques proposed by Tutz and Binder (2005) where splines
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are used to allocate similar individuals to clusters. However, this latter approach focuses more on cluster

assignment and variable selection, and not on interpretation of subgroups and their associated risks with

an outcome of interest. In contrast, our approach embraces multicollinearity by highlighting coherent

patterns and combination of variables influencing the health outcome.

Variables within the profile that explain the contrast between the subgroups with high probability can

be highlighted, thus adding to the interpretability of the clusters. Using this framework on a population

health survey, we have demonstrated some benefits of using the approach presented over the traditional

logistic regression. However, we note that logistic regression aims at estimation of main effects and in-

teraction terms, whilst the profile approach described in this manuscript is aimed at the examination of

a combination of variables that structure the variability of the data. Since the two approaches address

different characteristics of association, both should be used in a complementary fashion to progress our

understanding of the association between an outcome and a set of correlated covariates.
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(b) p̄∗ ≈ 0.36; Pr(p̄∗ > 0) ≈ 1.00

Fig. 1. Profiles values for φ̄p
k corresponding to subgroups with low and high risks for mental health problems. Bars

in blue correspond to statistically significant values of φ̄p
k, i.e. parameters for which the posterior probability of being

greater (less) than zero is above 0.95. Individual variables are defined in Table 3 of the supplementary material.
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(b) p̄∗ ≈ −0.00; Pr(p̄∗ < 0) ≈ 0.51

Fig. 2. Profiles values for φ̄p
k corresponding to English speaking subgroups which do not have statistically risks for

mental health problems. Bars in blue correspond to statistically significant values of φ̄p
k, i.e. parameters for which the

posterior probability of being greater (less) than zero is above 0.95. Individual variables are defined in Table 3 of the

supplementary material.
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Table 1. Main-effects model using forward selection. Note that stepwise procedure gave warnings and model was

refit with all covariates significant at p < 0.05 level. Individual variables are defined Table 3 of the supplementary

material.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3070 0.0613 5.01 0.0000

young∗ 0.0153 0.0181 0.85 0.3982
nonwhite∗ −0.0139 0.0215 −0.65 0.5171

male∗ 0.0447 0.0179 2.50 0.0128
mother∗ 0.0292 0.0231 1.26 0.2070

language −0.0962 0.0274 −3.51 0.0005
er visit 0.0522 0.0234 2.23 0.0261

med home −0.0961 0.0224 −4.29 0.0000
pp enough time 0.0982 0.0249 3.94 0.0001

rep grade −0.0612 0.0326 −1.88 0.0611
activity −0.1205 0.0260 −4.63 0.0000
religion 0.0381 0.0214 1.78 0.0752

mom psy health −0.1460 0.0376 −3.88 0.0001
smoke 0.0583 0.0222 2.62 0.0089

goodsleep −0.0701 0.0333 −2.10 0.0357
safe neighbor −0.0626 0.0253 −2.47 0.0136

∗Used as confounders for the logistic regression analysis in Section 4.1.
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Table 2. Interaction model using forward selection starting with main-effects listed in Table 1 plus all two-way in-

teraction terms. Note that stepwise procedure gave warnings and model was refit with all covariates significant at

p < 0.05 level. Individual variables are defined Table 3 of the supplementary material.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2172 0.0667 3.26 0.0012

young∗ 0.0208 0.0178 1.17 0.2425
nonwhite∗ −0.0169 0.0210 −0.80 0.4223

male∗ 0.0393 0.0173 2.27 0.0238
mother∗ 0.0242 0.0226 1.07 0.2843

language −0.0868 0.0272 −3.19 0.0015
er visit 0.2144 0.0598 3.59 0.0004

med home −0.3322 0.0599 −5.55 0.0000
pp enough time 0.3308 0.0562 5.88 0.0000

activity −0.0064 0.0407 −0.16 0.8743
religion 0.0414 0.0209 1.98 0.0483

mom psy health −0.1454 0.0368 −3.95 0.0001
smoke 0.0564 0.0217 2.59 0.0097

goodsleep −0.0832 0.0326 −2.56 0.0108
safe neighbor −0.0566 0.0247 −2.29 0.0221

activity:med home 0.2761 0.0643 4.30 0.0000
activity:er visit −0.1846 0.0648 −2.85 0.0045

activity:pp enough time −0.2835 0.0611 −4.64 0.0000
∗Used as confounders for the logistic regression analysis in Section 4.1.


