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Abstract

We propose a novel methodology to construct proposal densities in

reversible jump MCMC algorithms so that consistent mappings across

competing models are achieved. Unlike nearly all previous approaches

our proposals are not restricted to operate to moves between local

models, but they are applicable even to models that do not share

any common parameters. We focus on linear regression models and

produce concrete guidelines on proposal choices for moves between

any models. These guidelines can be immediately applied to any re-

gression models after applying some standard data transformations to

near-normality. We illustrate our methodology by providing concrete

guidelines for model determination problems in logistic regression and

log-linear graphical models. Two real data analyses illustrate how our

suggested proposal densities together with the resulting freedom to pro-
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pose moves between any models improve the mixing of the reversible

jump Metropolis algorithm.

Keywords — Bayesian inference; Graphical models; Linear regression; Log-linear

models; Logistic regression

1 Introduction

The reversible jump MCMC algorithm was introduced by Green (1995) as

an extension to the standard Metropolis-Hastings algorithm to variable di-

mension spaces; see also Tierney (1998). It is based on creating a Markov

chain which can ‘jump’ between models with parameter spaces of different

dimension. In a Bayesian inference framework, its great impact stems from

the fact that it allows the calculation of posterior model probabilities for a

large number of competing models. Here the key issue is not the calculation

of marginal densities per se, but the ability to search, via a Markov chain

simulation, in a large space of models in which marginal densities are not

available. Although reversible jump has been extensively used in many ap-

plied model determination problems, its widespread applicability has been

hindered by the difficulty to achieve proposal moves between models that

employ some notion of inter-model consistency that facilitates good mixing

across models. We provide a methodology that constructs moves between

any models in the model space in a general regression setting, and we illus-

trate its applicability in logistic regression and log-linear graphical models.
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The general reversible jump algorithm can be described as follows. As-

sume that a data vector y is generated by model i ∈ M, where M is a set

of competing models. Each model specifies a likelihood f(y|θi, i), subject

to an unknown parameter vector θi ∈ Θi of size pi, where Θi ⊆ Rpi is the

parameter space for model i. Let (θi, i) be the current state of the Markov

chain. Then, the reversible jump algorithm consists of the following steps:

1. Propose a new model j with probability π(i, j).

2. Generate u from a proposal density q(u|θi, i, j, y).

3. Set (θj , u
∗) = gi,j(θi, u), where the deterministic

transformation function gi,j and its inverse are

differentiable. Note that pj +dim(u∗) = pi +dim(u) and that

gi,j = g−1j,i .

4. Accept the proposed move from model i to model j with a

probability αi,j = min(1, A),

A =
f(y|θj , j)f(θj |j)f(j)π(j, i)q(u∗|θj , j, i, y)

f(y|θi, i)f(θi|i)f(i)π(i, j)q(u|θi, i, j, y)
×
∣∣∣∣∂(θj , u

∗)

∂(θi, u)

∣∣∣∣
where f(i) and f(θi|i) denote prior densities for model i and

parameter vector θi respectively.

Step 1 of the algorithm seems to create a freedom of choice, but unfor-

tunately proposed models should be carefully chosen such that θj in step

3 belongs to a relatively high region of the posterior density f(θj |j, y) ∝
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f(y|θj , j)× f(θj |j) to increase the probability of acceptance. This, in turn,

implies that the functions q and g in steps 2 and 3 are key elements of the

successful application of the algorithm.

Brooks et. al. (2003) have reviewed and suggested various ways to

choose the parameters of q efficiently. However, the requirement for the

existence of some consistency in the mapping between models has limited

all these methods to operate with ‘local’ moves in the model space. This

means that θi and θj often have many common elements, and in fact in

most cases the one is a subset of the other, resulting in attempted moves

between nested models. Richardson and Green (1997) introduce a technique

where the desired compatibility between models is retained through moment

matching. Ehlers and Brooks (2008) construct moves between non-nested

autoregressive models and choose the parameters of the proposal densities

by approximating relevant posterior conditional distributions, setting the

first and higher order derivatives of the acceptance ratio with respect to

u equal to zero. Fan at al. (2009) construct proposals with the use of a

marginal density estimator. They provide guidelines for the implementation

of their method on normal mixtures and autoregressive models, allowing for

local moves in the model space; see also Vermaak at al. (2004).

An intuitive description of our proposed methodology is based on the

following two points. First, when model jumps are proposed, it is desirable

that beliefs about the data under the current model (with beliefs described
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by the likelihood) should be the same to what we expect to believe if we ac-

cept the proposed model. Second, these proposals should be general enough

to allow moves even when θi and θj do not have any common elements.

After specifying the mathematical formulation that satisfies the two key

points above, we assume that q is a multivariate normal density and we

derive exact solutions for its mean vector and covariance matrix in the case

of linear regression models. We then investigate the applicability of our

method to some binomial and contingency table data in which the data

are transformed to approximate normality. Although this approximation

might not be accurate, the derived proposal densities are still appealing

and in fact provide an impressive improvement over the currently available

reversible jump proposed algorithm of Dellaportas and Forster (1999).

Many currently available ways to choose q and g are described in great

detail in the paper by Brooks et. al. (2003) and the accompanying discus-

sion. See also Sisson (2005), Ehlers and Brooks (2008) and Fan at al. (2009).

As pointed out earlier, the majority of them refers to ‘local’ moves in M.

An interesting different approach, that is a ‘global’ method and in very close

line with our suggested proposal densities, is given by Green (2003), who

develops a method for constructing proposal distributions that is similar in

spirit to the random walk Metropolis sampler of Roberts (2003). He con-

siders normal proposal densities and suggests that their mean and variances

should be functions of the mean and variances of the target density, which
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can be estimated with a pilot run. This requirement reduces the appeal of

this method when the number of models is large. Hastie (2004) extends this

approach, considering a proposal that is a mixture of normal distributions

and adaptive sampler for the specification of relevant parameters.

In an unpublished report, Green (2000) produces similar results with

those presented here. In fact, our empirical findings show that, in some in-

stances, the resulting reversible jump efficiency between the two approaches

is comparable. Therefore, one can view our work as an effort to provide

theoretical justifications to the approach of Green (2000). In this report,

two competing general linear models, MX and MZ are considered with in-

dependent homoscedastic normal errors and known variance. This stylised

situation allows to visualise the structure of the problem and utilize the

residuals of the two models to construct efficient proposals. The author

uses the random u vector to perturb the starting point orthogonally away

from the hyperspace defined by the MX design matrix, before it is projected

onto the MZ hyperspace. This leads to a normal proposal density with mean

µ = (X ′jXj)
−1X ′jy+(X ′jXj)

−1X ′j(Xiθi−Piy). Green suggested the variance

of this proposal to be, Σ = (X ′jXj)
−1X ′j (In − Pi)Xj(X

′
jXj)

−1. The rank of

this covariance matrix is pj − t. We implement these proposals, along with

the ones we derive in this manuscript, in the real data illustrations presented

in Section 3.

The rest of the paper proceeds as follows. Section 2 gives the mathe-
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matical derivation of our proposed methodology. In Section 3, we search

the space of graphical models for a large contingency table using reversible

jump MCMC. Also, we search through a series of logistic regression models

for a data set that contains binomial observations. In Section 4 we conclude

with some discussion.

2 The proposed approach

We consider an n-dimensional vector y of normal observations and com-

peting linear models N(ηi, Vi), i ∈ M, where ηi = Xiθi, Xi is the design

matrix of model i and θi is of dimension pi. Assume that the reversible jump

MCMC algorithm has a current state (θi, Vi, i) and that a move is proposed

to (θj , Vj , j). The variances Vi and Vj are considered known and are not the

subject of inference. Then, our key idea is that the proposal density for θj ,

q(u|θi, i, j, y), should satisfy the relationship

f(y|θi, Vi, i) = ci,jEu {f(y|u, Vj , j)} (1)

where f(y|θi, Vi, i) denotes the likelihood of the data under the current state

of the chain, and f(y|u, Vj , j) denotes the likelihood of the data under model

j with parameters u. Eu denotes expectation with respect to the proposal

density q(u|θi, i, j, y). Note that we denote with u the argument of the

proposal density to simplify the notation, although u is just the random

component in the construction of θj .
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Equation (1) expresses the desire to propose θj that should, on average

with respect to the proposal density, obtain f(y|θi, Vi, i) = f(y|θj , Vj , j). In

Section 4, we discuss in detail the simple coherence argument this require-

ment is based on. The constant ci,j is introduced to take into account the

possibility that two competing models may be inherently different, so that

obtaining similar likelihoods is not possible. The role of ci,j is to weight down

or up the likelihood of the destination model so that equation (1) can always

be realized. We set that ci,j takes the form f(y|θ̂i, Vi, i)/f(y|θ̂j , Vj , j), where

θ̂i and θ̂j are the maximum likelihood estimates of the model parameters.

We attack (1) by assuming that q(u|θi, i, j, y) is a Normal densityN(µ,Σ).

There are clearly many values of µ and Σ that satisfy (1), and consequently

many proposal densities q(u|θi, i, j, y) with that property. This fact is taken

care of in our theoretical development below. When these solutions are avail-

able, they provide a yardstick to construct proposal densities for other linear

regression models with non-normal responses; we provide such examples in

Section 3.

Our approach has a similarity with the centering functions approach

suggested by Brooks et al. (2003), but the two methods are inherently

different. The centering functions approach imposes exact equality between

the likelihood functions of models i and j so that a deterministic mapping

can be constructed. The function gi,j is predetermined, defined for the case

where moves are attempted between nested models and common parameters
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are kept fixed. In contrast, we aim to explore (1) and construct proposals for

complex moves between models that do not necessarily share parameters,

with proposed values that change adaptively in accordance with the current

state of the chain and no parameters are kept fixed. The following theorem

provides the required solution to (1):

Theorem 1: Under the model determination setup defined above, one so-

lution for the mean µ of the proposal distribution N(µ,Σ) is given by

µ = (X ′jV
−1
j Xj)

−1X ′jV
−1
j

{
y +B−1V

−1/2
i (Xiθi − Piy)

}
. (2)

where B = (Vj + XjΣX
′
j)
−1/2 and Pi = Xi(X

′
iV
−1
i Xi)

−1X ′iV
−1
i is the pro-

jection matrix to the space generated by the columns of Xi, weighted by V −1i .

The proof of Theorem 1 is given in the Appendix.

This result has an interesting interpretation. The mean of the proposal

density is the maximum likelihood estimate of the new model plus a cor-

rection term that depends upon the difference between the fitted values

under the maximum likelihood estimate for model i, Piy, and the fitted val-

ues under the currently accepted θi. Intuitively, the difference Xiθi − Piy

determines a distance between the current value θi from the mode of its

posterior density, so the proposed value of θj lies, in expectation, in a rela-

tively equally high posterior region in model j. Note that, throughout the

paper, we assume that prior densities of parameters within each model are

non-informative in the sense that they are constant in the important region
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of the likelihood function.

We now turn to the determination of Σ. Note that Σ appears in Theorem

1 through matrix B in such a way that any choice for Σ would make B

invertible. However, it should be recognized that when jumping from model

i to model j some elements of θi and θj may be common to both models,

so it would be desirable to propose a move with reduced variability to these

elements. Assume that the last t parameters in θj are common to both

models. There are at least two possible choices for the form of Σ. Setting

Qij = (X ′iV
−1/2
i V

−1/2
j Xj), the first choice involves the matrix Q−1jj which

is the covariance matrix associated with f(θj |j, Vj , y). Σ can be formed

by that part of rows and columns of Q−1jj which correspond to the pj − t

uncommon parameters between models i and j, whilst all other elements

of Q−1jj are replaced by zero. The second choice involves the matrix Q−1jj −

Q−1jj QjiQ
−1
ii QijQ

−1
jj , of which a simplified version was proposed by Green

(2000) in the unpublished report discussed in Section 1. This suggestion has

two advantages; the first is that it is smaller than Q−1jj in the Löwner sense

(Harville, 1997) providing small variances for our proposals. The second is

that the rank of this matrix is pj − t and this matches the idea of using the

already gathered information about the t common parameters. Therefore,

we suggest that a reasonable choice for Σ is

Σ = Q−1jj −Q
−1
jj QjiQ

−1
ii QijQ

−1
jj + cIpj (3)

with any scalar c > 0 which makes Σ invertible. Thus, the proposed θj

10



is constructed as θj = (X ′jV
−1
j Xj)

−1X ′jV
−1
i

{
y +B−1V

−1/2
i (Xiθi − Piy)

}
+

Σ1/2u where u ∼ N(0, Ipj ).

The constant c is clearly a tuning parameter that determines the vari-

ability of the proposals for the common parameters of models i and j. If

c > 0, then dim(u) = pj and dim(u∗) = pi, even if some of the parameters

of the two models are common. In all analyses we have performed, mixing

performance was very robust to small values of c, but of course some tuning

is required as it is usually the case in reversible jump algorithms. For log-

linear models, where scaling the design matrix has smaller, comparatively to

linear models, effect on the parameter values, we have found that any value

of c below 10−3 gives very similar results. On the other extreme, the case

c = 0 acts as in the usual nested models case in which there is zero variabil-

ity in the proposals of common parameters, although in our case, values of

common parameters also change when moving to a different model. Then,

dim(u) = pj − t and dim(u∗) = pi − t.

Finally, one last issue in implementing the reversible jump MCMC algo-

rithm is the derivation of the jacobian term in step 4. Since our proposals for

θj are constructed using both θi and u, the jacobian of the transformation

seems to have a complex form. But, interestingly, after some algebra, this

Jacobian (for c > 0) simplifies to,

∣∣∣∣∂(θj , u
∗)

∂(θi, u)

∣∣∣∣ =
∣∣∣Σ1/2

i,j

∣∣∣ ∣∣∣Σ−1/2j,i

∣∣∣ ,
where Σi,j denotes the proposal density covariance matrix Σ when a move
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is attempted from model i to model j.

3 Implementation of proposals

We provide two real data examples in log-linear graphical and logistic regres-

sion models. The key idea is that we can exploit the results of Section 2 by

first applying a data transformation to responses so that they approximate

normality; see, for example, Clyde (1999). We chose these examples to point

out that our results are immediately applicable to any regression models

since this approximation is not needed to be adequately precise: we just use

it to approximate some good proposal densities for the MCMC algorithm.

All acceptance probabilities are based on the original data and models. Any

departure from (1) would not affect the correctness of our sampler, whilst

small departures should still provide good proposal densities.

3.1 Graphical log-linear model determination

Edwards and Havranek (1985) presented a 26 table in which 1841 men were

cross-classified by six risk factors for coronary heart disease. The factors

were smoking (A), strenuous mental work (B), strenuous physical work (C),

systolic blood pressure (D), ratio of lipoproteins (E) and history of coronary

heart disease in family (F). We assume main effects are always present,

and consider for comparison the 32768 possible graphical log-linear models.

Equal prior model probabilities were assigned to the models, and the vague
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priors suggested in Dellaportas and Forster (1999) were used. As pointed

out by these authors, for such a large number of competing models a simple

search algorithm consisting of equally likely moves to any of the models is not

appropriate, so a model search algorithm that moves locally in model space is

necessary for exploring efficiently the model space. Dellaportas and Forster

suggested a reversible jump algorithm adopting the common approach of

allowing moves that involve only the addition or deletion of an edge; indeed

this is used extensively in the literature, see Jones et al. (2005). Since jumps

between models take place only between nested models, Dellaportas and

Forster suggested adopting proposal densities for the uncommon parameters

obtained through an initial pilot run on the saturated model.

Compared to the existing algorithm of Dellaportas and Forster, our con-

tribution consists of two parts. First, the initial pilot run that is needed to

obtain proposal densities is not needed. Second, since we have no restric-

tions for moves to only nested models we propose less ‘local’ moves that

allow much better mixing in the large model space. These two advantages

become more important as the dimension of the model space increases.

Let wk be a cell count, distributed as a Poisson random variable and

ηik = (Xiθi)k be the linear predictor so that for model i, E(wk|M = i) =

exp{ηik}, k = 1, . . . , n. To apply Theorem 1 in log-linear and graphical

models we can proceed by first transforming the data to near-normality as

follows. For adequately large wk (say greater than five), a Poisson variable
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with mean exp{ηik} is approximated by a normal density with mean and

variance equal to exp{ηik}. Thus, by applying the Delta method we obtain

that for model i,
√
wk is approximately distributed as a N(exp{0.5ηik}, 0.25)

random variable. A further Taylor expansion to exp{0.5ηik} around log w̄,

where w̄ is the observations sample mean, results to the approximation

E (
√
wk) '

√
w̄ +

√
w̄

2
(ηik − log w̄) .

which can be used to produce the modified random variable

yk =
2√
w̄

(
√
wk −

√
w̄) + log(w̄)

which is approximately distributed as N(ηik, 1/w̄).

Assuming that all main effects are always present, we adopt a search

approach that allows for three possible moves: the removal of an edge from

the graph, the addition of an edge, or the replacement of one edge by another.

We used (3) for Σ, and c = 10−5. For this data set, the MCMC mixing is

similar for any value of c within (10−9, 10−3). Positive values of c smaller

than 10−9 are causing numerical instability, whereas the results are virtually

identical when c = 0.

We obtained results derived from 3×106 iterations, after 8×105 burn-in

iterations were discarded. Results regarding posterior model probabilities

are identical to Dellaportas and Forster (1999) and are not reproduced here.

The reversible jump MCMC accepted model moves with average probability

5.12%. Setting c = 0 gives, effectively, the same acceptance rate (5.15%) but
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this choice implies a slightly more complex algorithm from a computational

perspective, requiring two matrix decompositions, one for the variance ma-

trix associated with the proposed jump and one for the variance matrix as-

sociated with the reverse move. With the proposals derived following Green

(2000), the percentage of accepted moves is 5.1%, similar to the acceptance

rate with the theoretically derived proposals. Notice that to implement pro-

posals following Green (2000) two variance matrix decompositions are also

required.

We compared the performance of the derived proposals with the re-

versible jump algorithm described by Dellaportas and Forster (1999). This

procedure only allows moves between nested models, after an edge has been

either removed or added. New values are proposed for the additional pa-

rameters when a jump to a larger model is attempted. Values of common

parameters remain the same. The proposal distributions are multivariate

normal densities fitted around the posterior moments of the saturated model

parameters. The posterior moments are calculated with a pilot chain. The

proportion of accepted moves with the Dellaportas and Forster algorithm

was 2.4%. To evaluate the quality of our proposals, irrespectively of the

type of moves that are allowed, we considered an identical sampler, and re-

placed the Dellaportas and Forster proposals with the ones derived in this

manuscript. Under this set up, the acceptance rate is 7.1%, a consider-

able increase compared to 2.4% that is only attributed to better parameter
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proposals.

Note that, interestingly, allowing only for nested moves favors a higher

rather than a lower acceptance rate. For instance, with our proposals, when

only nested moves were attempted the acceptance rate increased from 5.12%

to 7.1%. (There is a similar increase with the Green (2000) proposals too.)

This is because the sampler moves with smaller steps within the model space,

accepting plenty of moves close to a local mode. One of the usual worries of

practitioners that adopt the reversible jump MCMC algorithm is that the

sampler may be trapped at a ‘sticky patch’ in the model space, which results

to very low probability of leaving a model which has locally high probability

but it is not the mode of the posterior density. The main advantage of our

method is that it allows for moves between non-nested models, potentially

increasing the mobility of the chain between local modes in the model space.

To obtain an indication of how likely the MCMC chain is trapped in such

a local mode, we ran the algorithm 200 times and recorded the number of

iterations before the highest posterior density model is first visited. For

consistent results we started all chains from the model that only contains

main effects. Our strategy required an average of 447 iterations to reach

the best model with a standard deviation of 455 iterations, whereas the

Dellaportas and Forster (1999) algorithm required 8454 iterations with a

standard deviation of 17645. Very similar results were obtained for c = 0

(483, s.d. 479) and the Green (2000) method (493, s.d. 554). It is clear
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that allowing for non-nested moves between models increases significantly

the mobility of the chain, allowing to move faster between local modes in

the model space.

Finally, we checked whether the choice of Σ is important, and considered

an alternative naive choice of Σ = w̄−1(X ′jXj)
−1 or other choices such as

Σ = rw̄−1(X ′jXj)
−1 for various values 0 < r < 1. In all cases the average

acceptance rate never exceeded 1%, indicating that choosing Σ as in (3)

offers a considerable comparative advantage.

3.2 Competing logistic regression models for binomial data

Our suggested data transformation for logistic regression model determina-

tion problems proceeds as follows. Let zk, k = 1, . . . , n, be the number of suc-

cesses in a series of n binomial experiments with corresponding nk trials and

probabilities of success pk. Define wk = zk/nk and let ηik = (Xiθi)k be the

linear predictor so that for model i ∈M, E(wk|i) = exp{ηik}/(1+exp{ηik}).

Since wk is approximately normal with mean pk and variance equal to

pk(1 − pk)/nk, application of the Delta method gives that, for model i,

arcsin(
√
wk), is approximately normal with mean arcsin(

√
pk) and variance

0.25n−1k . A further Taylor expansion to arcsin(
√
pk) around log(w̄/(1− w̄)),

where w̄ denotes the sample mean of wk, results to the approximation

E (arcsin(
√
wk)) ' arcsin(

√
w̄k) +

√
w̄(1− w̄)

2
(ηik − log(w̄/(1− w̄))) .
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Therefore, the modified random variable

yk = 2(w̄(1− w̄))−1/2(arcsin(
√
wk)− arcsin(

√
w̄k)) + log(w̄/(1− w̄))

is approximately distributed as N(ηik, (nkw̄(1− w̄))−1) and Theorem 1 can

be applied.

We consider a well known data set analysed in Fowlkes et al. (1988).

The response is the number of subjects satisfied with their employment.

The four explanatory factors are Race (A, two levels), Age (B, two levels),

Sex (C, two levels) and Region (D, seven levels). Assuming main effects

are always present, we compare and assess the 64 models that contain all

possible combinations of two-way interactions, from no interactions at all to

all six two-way interactions. Equal prior model probabilities are assigned

to the models and the unit information priors suggested in Ntzoufras et

al. (2003) are adopted. Our proposals allow for direct moves between non-

nested models and, therefore, we adopt a flexible model search strategy that

consists of the following three possible moves: remove an interaction, add

an interaction or replace one interaction term with another.

We obtained results derived from 3× 105 iterations, after 5× 104 burn-

in iterations were discarded. With our proposed strategy, with Σ as in

(3), 8.7% of the proposed model jumps are accepted. The algorithm was

implemented for c = 10−5 and turned out to be very robust for a series of

values such that c < 10−4. Results were virtually identical when c = 0,

with an acceptance rate of 8.55%. With the proposals derived in Green
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(2000), where the variance matrix is not weighed by Vi, the percentage of

accepted moves was 0.5%, considerably smaller than the acceptance rate of

our proposals. This illustrates that, for binomial data, it is important to

allow for the variance of each yk to be weighted by the number of trials nk

in cell k.

Finally, proposing from multivariate normal densities fitted around the

posterior moments of the saturated model parameters along the lines of

Dellaportas and Forster (1999), and allowing for only the addition or removal

of an interaction, leads to an acceptance rate of 2.3%. An identical sampler

that uses the proposals derived in this manuscript has an acceptance rate of

8.7%, about four times higher compared to Dellaportas and Forster.

4 Discussion

We have presented a novel idea for the construction of general proposal dis-

tributions for the reversible jump Markov chain Monte Carlo algorithms and

we have provided guidelines to apply this method to general regression mod-

els, possibly after some data transformation of the responses. Our proposed

strategy can be seen as an effort to attack the most interesting problem

emanated by the work of Green (1995), namely the construction of efficient

proposal densities for jumps between any (and not just ’local’ or nested)

models in model space.

The results in this manuscript are based on (1), which follows from the
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simple coherence requirement that what we believe about the data under

the current model (with beliefs about the data described by the likelihood)

should be the same to what we expect to believe about the data if we

accept the proposed model. The reasoning behind this requirement becomes

clear in the case of discrete data. Assume that for two binary variables y1

and y2 we have accepted at the current state of the chain that P (y1 =

1, y2 = 0|θ1, 1) = 0.7. Then, before we accept any change in the state of the

chain, it would be incoherent to expect that when we move to, say, state

(θ2, 2), the joint probability P (y1 = 1, y2 = 0) will be different, say 0.9.

This line of thought is loosely based on the fundamental requirement that

pre-posterior expectations should be equal to prior expectations, viewing

P (y1 = 1, y2 = 0) as an expectation. In the reversible jump setting, we

should not a priori expect that our beliefs for the data will change just

because a different model will be adopted. The constant ci,j takes into

account generic differences between two competing models, e.g. differences

in dimensionality.

Although this recipe has only intuitive appeal and its optimality prop-

erties are hard to investigate, it provides a fail-safe strategy in the sense

that such moves can be on the one hand very general and on the other will

never be dramatically poor: to see this, notice that while the parameters

are updated within each model they are sampled with high probability from

the higher posterior regions, and therefore proposed moves to other models
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will often propose parameters in the higher posterior regions too.

In general, in model comparison applications with a relatively large num-

ber of models, it is very rare that strong prior information is considered for

the model parameters. In the rare event that, for some models, the prior

information for their parameters is at odds with the likelihood, the mode

of the posterior density of θi and/or θj may not be close to the maximum

likelihood estimates θ̂i and θ̂j . In that case, it is possible that a θi close to

the mode of its posterior density will lead to a proposed θj that is close to

the tail of its posterior density and vice versa.

Our strategy is applicable to any model determination problem in the

generalized linear model specification. We have chosen to illustrate it with

the most popular Poisson and binomial responses, but the transformation

to normality is available to any densities from the exponential family. Thus,

we feel that the applicability of our method is very broad and will spread

the applications of reversible jump MCMC in many interesting model de-

termination problems.
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Appendix

First we prove the following Lemma.

Lemma: Consider two quadratic forms (z− µ)′Σ−1(z− µ) and (y−Xz)′V −1(y−

Xz). Then,

(z − µ)′Σ−1(z − µ) + (y −Xz)′V −1(y −Xz) = (z −m)′A(z −m) +K

where,

A = Σ−1 +X ′V −1X, m = A−1(Σ−1µ+X ′V −1y)

and

K =
(
µ− (X ′V −1X)−1X ′V −1y

)′ (
Σ + (X ′V −1X)−1

)−1 (
µ− (X ′V −1X)−1X ′V −1y

)
+y′V −1(In − PX)y,

where PX = X(X ′V −1X)−1X ′V −1 is the projection matrix to the space generated

by the columns of X weighted by V −1.

Proof of Lemma: After we complete the square using standard linear algebra we

obtain that,

(z − µ)′Σ−1(z − µ) + (y −Xz)′V −1(y −Xz) = (z −m)′A(z −m) +K

where,

A = Σ−1 +X ′V −1X, m = A−1(Σ−1µ+X ′V −1y)

and

K = −(Σ−1µ−X ′V −1y)′(Σ−1 +X ′V −1X)−1(Σ−1µ−X ′V −1y) + µ′Σ−1µ+ y′V −1y.

To simplify the expression for K we complete the square so that,

(Σ−1µ−X ′V −1y)′(Σ−1 +X ′V −1X)−1(Σ−1µ−X ′V −1y)− µ′Σ−1µ
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= (µ−m1)′A1(µ−m1) +K1,

where,

A1 = Σ−1(Σ−1 +X ′V −1X)−1Σ−1 − Σ−1 = −[Σ + (X ′V −1X)−1]−1

m1 = −A−11 Σ−1(Σ−1 +X ′V −1X)−1Σ−1ΣX ′V −1y = (X ′V −1X)−1X ′V −1y

and

K1 = y′V −1X(X ′V −1X)−1X ′V −1y.

Therefore,

(z − µ)′Σ−1(z − µ) + (y −Xz)′V −1(y −Xz)

= (z −m)′A(z −m)− (µ−m1)′A1(µ−m1)−K1 + y′V −1y,

= (z−m)′A(z−m)+(µ−(X ′V −1X)−1X ′V −1y)′(Σ+(X ′V −1X)−1)−1(µ−(X ′V −1X)−1X ′V −1y)

+y′V −1(I −X(X ′V −1X)−1X ′V −1)y.

Proof of Theorem 1:

Eu {f(y|u, Vj , j)} =

∫
det(2πΣ)−1/2 det(2πVj)

−1/2 exp

{
−1

2
(u− µ)′Σ−1(u− µ)

−1

2
(Xju− y)V −1j (Xju− y)

}
du

We apply the previous Lemma to the sum which is inside the exponential, replacing

z with u. We obtain that this sum becomes,

(u−m)′A(u−m) + y′V −1j (In − Pj)y

+(µ− (X ′jV
−1
j Xj)

−1X ′jV
−1
j y)′

(
Σ + (X ′jV

−1
j Xj)

−1)−1 (µ− (X ′jV
−1
j Xj)

−1X ′jV
−1
j y)

where Pj = Xj(X
′
jV
−1Xj)

−1X ′jV
−1, A = Σ−1 +X ′jV

−1
j Xj and m = A−1(Σ−1µ+

X ′jV
−1
j y). Only the first part of this sum depends on u, and the integral becomes,

det(2πΣ)−1/2 det(2πVj)
−1/2 det(2π(Σ−1 +XjV

−1
j Xj)

−1)1/2×
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exp

{
−1

2
(µ− (X ′jV

−1
j Xj)

−1X ′jV
−1
j y)′(Σ + (X ′jV

−1
j Xj)

−1)−1(µ− (X ′jV
−1
j Xj)

−1X ′jV
−1
j y)

}
× exp

{
−1

2
y′V −1j (In − Pj)y

}
The product of the first and the third determinant can be simplified using (1.5)

of Harville (1997, p.417) to det
{
V −1j

(
Vj +XjΣX

′
j

)}−1/2
By applying twice (2.2) of

Harville (1997, p.424) we can also show that
(
Σ + (X ′jV

−1
j Xj)

−1)−1 = X ′j
(
Vj +XjΣX

′
j

)−1
Xj .

Consequently, we obtain that,

Eu {f(y|u, Vj , j)} = det(2πVj)
−1/2 det

{
V −1j

(
Vj +XjΣX

′
j

)}−1/2
exp

{
−1

2
(Xjµ− Pjy)′

(
Vj +XjΣX

′
j

)−1
(Xjµ− Pjy)

}
×exp

{
−1

2
y′V −1j (In − Pj)y

}
Note that for the MLE θ̂i = (X ′iV

−1
i Xi)

−1X ′iV
−1
i y the likelihood of the data be-

comes

f(y|θ̂i, Vi, i) = det(2πVi)
−1/2 exp

{
−1

2
y′V −1i (In − Pi)y

}
and the ratio f(y|θi, Vi, i)/f(y|θ̂i, Vi, i) reduces to

exp

{
−1

2
(Xiθi − y)′V −1i Pi(Xiθi − y)

}
= exp

{
−1

2
(Xiθi − Piy)′V −1i (Xiθi − Piy)

}
Now, for ci,j = f(y|θ̂i, Vi, i)/f(y|θ̂j , Vj , j) condition (1) becomes,

f(y|θi, Vi, i)
f(y|θ̂i, Vi, i)

=
Eu {f(y|u, Vj , j)}
f(y|θ̂j , Vj , j)

or

exp

{
−1

2
(Xiθi − Piy)′V −1i (Xiθi − Piy)

}
= det(2πVj)

−1/2 det
{
V −1j

(
Vj +XjΣX

′
j

)}−1/2
exp

{
−1

2
(Xjµ− Pjy)′

(
Vj +XjΣX

′
j

)−1
(Xjµ− Pjy)

}
×exp

{
−1

2
y′V −1j (In − Pj)y

}
det(2πVj)

1/2 exp

{
1

2
y′V −1i (In − Pi)y

}
or

exp

{
−1

2
(Xiθi − Piy)′V −1i (Xiθi − Piy)

}
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= κ−1/2 exp

{
−1

2
(Xjµ− Pjy)′

(
Vj +XjΣX

′
j

)−1
(Xjµ− Pjy)

}
where κ = det

{
V −1j

(
Vj +XjΣX

′
j

)}
> 1 (Rao and Toutenburg, 1995, p.299). By

taking logarithms, the last equation becomes,

(Xiθi − Piy)
′
V −1i (Xiθi − Piy) = log κ+ (Xjµ− Pjy)

′
B2 (Xjµ− Pjy)

where B2 = (Vj + XjΣX
′
j)
−1. Setting τ = (log κ)1/2(α′B2α)−1/2, where α =

(In − Pj)v and v any n-dimensional vector, we can see that the previous equation

can be written as,

(Xiθi − Piy)
′
V −1i (Xiθi − Piy) = (Xjµ− Pjy − τα)

′
B2 (Xjµ− Pjy − τα) .

Therefore, a µ which satisfies the above equality is given by

B (Xjµ− Pjy − τα) = V
−1/2
i (Xiθi − Piy)

Solving with respect to µ, we obtain

µ = (X ′jV
−1
j Xj)

−1X ′jV
−1
j y + (X ′jV

−1
j Xj)

−1X ′jV
−1
j B−1V

−1/2
i (Xiθi − Piy)

which proves Theorem 1.
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