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1 Overview
GUESS is an extension of ESS++ which enables to redirect computationally intensive linear algebra
operations to the Graphics Processing Unit (GPU). As such it represents a computationally optimised
C++ implementation of a fully Bayesian variable selection approach that can analyse, in a genome-
wide context, single and multiple responses in an integrated way.

Let X denote the n × p predictor matrix, where n is the number of observations and p is the
number of predictors and Y the n× q outcome matrix. GUESS searches for subsets of X that reliably
explain the joint variation of Y . This problem, known as variable selection or subset selection, is
particularly interesting when p is large and parsimonious models containing only a few predictors
are sought to gain interpretability. GUESS works well for problems where n > p and also n < p,
including the case where n << p (known as the “large p, small n”case). In the current version,
GUESS can handle several thousands of observations (n < 20, 000), hundreds of thousands of pre-
dictors (p < 1, 000, 000) and a few responses simultaneously (q < 10). Since GUESS searches for
subsets of covariates that jointly predict all the responses, the type and size q of the responses should
be chosen carefully. The significant gain in computational efficiency gained in this novel implemen-
tation compared to ESS++ was achieved by using GPU-based and optimised linear algebra libraries
(CULA). While these libraries yield faster (over one order of magnitude) matrix operations such as
multiplication or decomposition, they imply extensive data transfer from the memory/CPU to the
GPU, which in-turn can be computationally expensive. As a consequence, for smaller X matrices
(i.e. n < 1, 000, p < 10, 000), for which the matrix operations are not rate-limiting, the CPU version
of GUESS may be faster. Hence, to ensure both an optimal use of the algorithm, and to enable run-
ning GUESS on non-CULA compatible systems the call to GPU-based calculations within GUESS
can easily be switched off by the user (see below).

The model used by GUESS is the multivariate extension of the Gaussian linear model

Y −XB ∼ N (K,Σ) (1)

with N (·, ·) indicating the normal matrix variate and where:

• B is a p× q matrix of regression coefficients;

• K is a n× n matrix that controls the correlation among the observations;

• Σ is a q × q matrix that controls the correlation structure among the responses (the variance-
covariance matrix of Y ).
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Given the latent binary vector γ = (γ1, . . . , γp)
T , with γj = 1 if βj 6= 0 and γj = 0 if βj = 0,

j = 1, . . . , p, the Gaussian linear model (1) becomes

Y −XγBγ ∼ N (K,Σ) , (2)

where Bγ is the pγ × q matrix of non-zero regression coefficients extracted from B, pγ ≡ 1Tp γ, and
Xγ is the design matrix of dimension n× pγ with columns corresponding to γj = 1.

GUESS explores the 2p-dimensional model space using an extension of Parallel Tempering called
Evolutionary Monte Carlo that combines Monte Carlo Markov Chain (MCMC) and genetics algo-
rithms. Specifically, GUESS relies on tempered multiple chains run in parallel that exchange infor-
mation about the configuration of the latent binary vector γ through local and global moves.

For further details about GUESS see:

Bottolo L, Chadeau-Hyam M, Hastie DI, Langley SR, Petretto E, Tiret L, Tregouet D and
Richardson S. (2011). ESS++: a C++ objected-oriented algorithm for Bayesian stochastic
search model exploration. Bioinformatics 27(4), 587–588.

Bottolo, L. and Richardson S. (2010). Evolutionary Stochastic Search for Bayesian model
exploration. Bayesian Analysis 5(3), 583–618.

Petretto, E., Bottolo, L., Langley, S.R., Heinig., M., McDermott-Roe, C., Sarwar, R.,
Pravenec, M., Hübner, N., Aitman, T.J., Cook, S.A. and Richardson, S. (2010). New in-
sights into the genetic control of gene expression using a Bayesian multi-tissue approach.
PLoS Comput. Biol., 6(4), e1000737.

***

GUESS is free to use, distribute and modify, under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of the License, or any later version. In
particular GUESS comes WITHOUT ANY WARRANTY.

Please report any problem or bug to m.chadeau@imperial.ac.uk or l.bottolo@imperial.ac.uk.

***
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2 Installation of GUESS
Prior to the installation of GUESS please check the two following points:

1. GUESS uses packages from the GNU Scientific Library (GSL) available at:

ftp://ftp.gnu.org/gnu/gsl/

For Linux users, the installation is straightforward and documented in the downloaded archive.

For Mac users we suggest the following:

• Download and install MacPorts from

http://www.macports.org/

• Then type:

sudo port install gsl

• Change the library path in the command line (or in profile file, in the home directory,
to get the correct path exported at each boot):
export PATH=$PATH:/opt/local/bin:∼/local/bin
export LIBRARY_PATH=$LIBRARY_PATH:/opt/local/lib
export CPATH=$CPATH:/opt/local/include

2. GUESS also offers the possibility to use proprietary GPU-optimised linear algebra libraries
from CULA (version R10 and more recent version as CULA dense):

http://www.culatools.com/

The installation of the library is platform-dependent and is documented on the website. It may
also require the installation of nvidia CUDA drivers from:

http://developer.nvidia.com/cuda-downloads

Users who do not wish to purchase and install CULA libraries can still use GUESS in its CPU
version (see below).

To install GUESS, please follow the steps listed below
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1. Download GUESS_Release_1.1.tgz and unpack it by typing tar zxvf
GUESS_Release_1.1.tgz to generate the GUESS_Release_1.1 directory.

2. Type cd GUESS_Release_1.1/Main. The makefile provided has been developed to
compile GUESS using the 32-bits version of CULA version R10. Compilation using different
version may require some edits in the makefile:

(a) for non-CULA users, open the makefile and set the variable CUDA to CUDA=0

(b) for CULA users, checks the features of your CULA installation:

• for the 64 bits version of CULA change the LFLAGS to:
LFLAGS = $(LFLAGSTMP) -L/usr/local/cuda/lib64

-L/usr/local/cula/lib64

i.e. replace lib with lib64.
• For the R11-CULA dense version change the LIBS to:

LIBS = $(LIBSTMP) -lpthread -llapack -lcuda -lcublas
-lcudart -lgslcblas -lcula_core -lcula_lapack

i.e. replace -lcula with -lcula_core -lcula_lapack

(c) GUESS has been developed and tested using the g++ and icc compilers on several
Linux and Mac platforms. Compiling it on other systems may require further edits in
the makefile. For instance the path to the GSL library may need to be changed.

3. Once the makefile has been appropriately updated, compile GUESS by simply typing make
in the GUESS_Release_1.1/Main/ directory.

4. To check the installation, and create the example files mentioned below, move to the
GUESS_Release_1.1/Example directory and run the example script by typing
./GUESS_example.sh

(a) If the code has been compiled with CUDA=1 option, GUESS will only use the GPU-
resources if the -cuda option is in the command line. To disable GPU calculations from
GUESS, which is recommended for small data sets (as the example files provided), simply
remove the -cuda option from the command line, or the script file used to run GUESS
(e.g. GUESS_example.sh)

(b) If the code has been compiled with CUDA=0 option, the -cuda option in the command
line will be ignored.

5



3 Contents of the GUESS package

3.1 Main directory
This directory contains the GUESS source code. The main program is GUESS.cc. In this file (and
many of the other *.cc files), a variable called DEBUG is defined and set to 0 by default. If the user
changes it to 1 and re-compiles the program, then step-by-step details of the program will be printed
out on the standard output device (or log file). This option is useful to understand how GUESS
works, but it usually generates very large log files.

3.2 Classes directory
This directory contains all the C++ classes used in GUESS. The classes typically relate to one feature
of the model and contain the associated parameters. There is also a class (Move_monitor) to
compile statistics in order to monitor the history of the MCMC run.

3.3 Routines directory
This directory contains:

• routines to read/write xml files (taken from the FREGENE program, see source files for de-
tails);

• GSL-based routines to enable random number generation, matrix handling and linear algebra.

• all functions called in GUESS main code.

3.4 Example directory
This directory illustrates how to use GUESS. It provides one example of each input file required by
GUESS as well as a shell file to run GUESS. Having run this example the directory will also contain
examples of the output files produced by GUESS.
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4 Running GUESS
GUESS can be run in a terminal or using a shell file. The minimal command has the form

./GUESS -X infile1 -Y infile2 -par infile3 -nsweep number1 -burn_in
number2 -out outfile

Some additional features can be set via additional command line options (see Section 4.3). However
GUESS can be used immediately without considering all the options in this document, by modifying
the files specified by the -X, -Y and -par arguments of Example/GUESS_example.sh.

4.1 Input Files
Predictor matrix (-X file_name) / required

This file contains the X matrix, the observed values of predictors (by columns) for each individuals
(by rows). The first row of the file is a single scalar representing the number of rows (observa-
tions, n ) and the second row, a scalar indicating the number of columns (predictors, p ). See file
Example/Input/X_example.txt. GUESS enables to include confounders in the model, these
variables will be included in all models visited. The number of confounders has to be specified
through -nconf command line option, and the first nconf columns of the predictor matrix must
contain observed values for these covariates in the population of interest.

Response matrix (-Y file_name) / required

This file contains the Y matrix, the observed values of outcome(s) which can be multi-dimensional
(by columns) for each individuals (by rows). The first row of the file is a single scalar representing
the number of rows (observations, n), and the second row, a scalar indicating the number of columns
(responses, q). See file Example/Input/Y_example.txt.

Parameter file (-par file_name)

The parameter file (see Example/Input/par_example.xml) contains all the user specified
parameters required to set up the move classes and options. It is an xml-formatted file containing the
members detailed in Table 1. These parameters are not mandatory and, if not specified, they will be
set to their default values, also given in Table 1.
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Init file (-init file_name)

This file (see Example/Input/Init_example.txt) specifies which variable to include at the
first run of the MCMC algorithm. The first row of the file is a single scalar representing the number
of rows (# variables to include). Subsequent rows indicate the position of the covariates to include.
This file is optional and if not specified, initial guesses of the MCMC algorithm will be derived from
a step-wise regression approach.

4.2 Main Output files
Log file

When GUESS is running, summary information describing the initial parameters and the computa-
tional time are sent to standard output that can be redirected to a log file (see
Example/Output/Example_log after successfully running the included example). Specifying
an additional run time option (-log) will also add information to this output about the moves sam-
pled at each sweep as well as information on each chain during the MCMC run. A Boolean variable
DEBUG set to false by default can also be switched to true in all *.cc files. When true, if
the program is recompiled, step-by-step monitoring of the MCMC run will be provided in the output.
This option is useful to understand how GUESS works, but it generates very large files.

Main output files

By default, two main output files are provided by GUESS:

1. Summary statistics about the best visited models
This file summarizes the best models visited along the MCMC run according to their posterior
probability, which is calculated during the post-processing (see Section 7). The number of
models described in that file can be specified by the user through the -top command line
option (see Section 4.3), and if not specified the whole list of unique models visited will be
printed out (together with the null and all univarite models). The path and file name where this
file is written is automatically defined from the argument of -out or -out_full option (one
of which is required), and has the following form:

$1_$2_sweeps_output_best_visited_models.txt

where $1 is the file name (including the full file path) entered by the user as the argument of
the -out or -out_full option, and $2 is the number of sweeps entered by the user as the
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argument of -nsweep option. The content of the file depends on which output option is chosen
by the user, -out or -out_full. Whatever the output option, models are presented in lines
and are sorted according to their posterior probabilities (descending order).

• -out option
The -out option outputs a simplified summary of the best model visited. For each model
the following information is provided:

– Rank: the rank of the model according to its posterior probability;
– #Visits: the number of times the model was visited during the entire MCMC run

(including the burn-in);
– Model_size: the number of variables in the model;
– log_Post_Prob: the log posterior probability;
– Model_Post_Prob: the posterior probability of the model;
– Jeffreys_scale: the Jeffreys’ scale value for the model. This value is defined as

log10BF(γs;∅), where BF(γs;∅) = exp {log pγs − log p∅} is the null model Bayes
factor associated to the model γs;

– Model: the last columns of the output lists the variables in the model.

• -out_full option
The -out_full option outputs a more detailed summary of the best models visited. See
for example

Example/Output/GUESS_example_11000_sweeps_output_best_visited_models.txt,

where, for each model, the following information is added:

– Sweep_1st_visit: the number of sweeps it took GUESS to first visit the model;
– #models_eval_before_1st_visit: the number of models evaluated before

the first visit to the model;

2. The marginal posterior probability of inclusion for each predictor
In this file the posterior probability of inclusion for each predictor (by lines) is presented
(Marg_Prob_Incl). As above, the path and file name where this file is written is auto-
matically generated and has the following form:

$1_$2_iter_output_marg_prob_incl.txt

where $1 and $2 are defined as above.

Other output files may be obtained from command lines options (see 5).
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4.3 Command line options
1. Mandatory options

• -X option:
This option specifies the path where to read in the predictor matrix X file.

• -Y option:
This option specifies the path where to read in the outcome matrix Y file.

• -nsweep int option:
The argument of this option is an integer specifying the number of sweeps for the MCMC
run (including the burn-in).

• -burn_in int option:
The argument of this option is an integer specifying the number of sweeps to be discarded
to account for the burn-in.

• -out/out_full file_name option:
This option is an alternative to -out_full. It specifies the file stem for writing the
standard/extended version of the output file respectively.

2. Running options

• -Egam int option:
this option specifies the (un-truncated) ‘a priori’ average model size.

• -Sgam int option:
this option specifies the (un-truncated) ‘a priori’ standard deviation of the model size.

• -n_chain int option:
this option specifies the number of parallel chains to include in the evolutionary algorithm.

• -cuda option:
If selected, this option will enable GPU-calculations implemented in GUESS. If GUESS
has been compiled with CUDA=0 option, -cuda will be ignored.

• -seed int option:
The argument of this option is an integer specifying the random seed used for the pseudo-
random number generation. If not specified it will be set to the current clock time.

• -timeLimit double option:
The argument of this option is an scalar defining the maximum duration (in hours) of the
run. If the run time reaches this limit, every information enabling the run to be resumed
(e.g. the status of the random number generator, etc . . . ) will be written out.
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• -resume option:
This flag will resume a run which has been halted after reaching the timeLimit spec-
ified in a previous run. In practice to resume a halted flag, simply change the log file
name to prevent overwriting, and add the -resume option to the original command line.

• -postProcess option:
This option enables the post-processing from a halted run.

• -extend int option:
This flag will extend a previous run for an additional number of iterations (specified by
the argument of the option). In practice to extend for N iterations an already finished run,
simply change the log file name to prevent overwriting, and add the -extend N option
to the original command line.

• -noRescaleX option:
If chosen, this option disables the standardisation of the X matrix.

3. Modelling options

• -par option:
This option specifies the path where to read in the xml–formatted parameter file contain-
ing the members listed in Table 1. If unspecified, parameters will be set to the default
values also listed in Table 1.

• -lambda double option:
If selected, this option disbales the g-prior setting implemented by default. Any negative
value for the argument of this option switches on the independent prior model (see section
6).

• -init option:
This option specifies the path where to read in the position of the variable to include in the
first model. If unspecified, the first model will be derived from a step-wise regression.

• -nconf int option:
This option specifies the number of confounders to be considered. The first nconf
columns of X will be included in all model visited.

• -iso_T flag:
The use of this flag disables the temperature placement within GUESS and sets the tem-
perature of each chain to 1.
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• -g_set double option:
This option specifies the value of g to be considered along the whole run and disables the
part of the algorithm related to the sampling of g.

4. Output options

• -history flag:
This flag generates a number of additional output files that record the history of each
move. See Section 5 for further details.

• -time flag:
This flag generates a file that records the time each sweep took (see Section 5).

• -log flag:
This flag enables extended reporting in the log file at each sweep (type of the moves sam-
pled, and for each chain, the model size, the posterior probability and marginal likelihood).

• -top int option:
This option specifies the number of top models to be considered for the output. If not
specified all visited models will be considered.
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Additional Information
5 Further output files
Other output files can also be generated by GUESS. These will be invoked if the corresponding com-
mand line option(s), -history and/or -time are selected (see Section 4.3).

1. Output enabled by -time option
The -time option produces a detailed track of the computational time along the MCMC run, in
the file $1_$2_sweeps_output_time_monitor.txt. Each line of the file represents
a sweep of the sampler and shows the absolute computational time (Time) and the average
computational time per model evaluated (Time_per_eval_model) during that sweep .

2. Outputs enabled by -history option
The -history option prints out 11 files whose path and file name are automatically generated
and are of the form

$1_$2_sweeps_output_$3_history.txt

where $1 and $2 are defined as above. These files provide details useful to monitor the be-
haviour of GUESS along the run. History files are:

a) Gibbs move history ($3=gibbs)
For every Gibbs scan that was performed the file record the sweep of the sampler (Sweep),
the number of variables that were added in (n_0->1) and the number of variables that
were removed (n_1->0).

b) FSMH move history ($3=fast_scan)
Each time a FSMH move is sampled along the MCMC run (Sweep), this file records: the
number of models evaluated (n_mod), the number of accepted moves (n_accept), the
number of proposed and accepted inclusion moves (n_mod_0_1 and n_accept_0_1,
respectively), the number of proposed and accepted exclusion moves (n_mod_1_0 and
n_accept_1_0, respectively).

c) Crossover moves history ($3=cross_over)
For all sweeps where a crossover move was sampled (Sweep), this file reports the type
of crossover move sampled (Move_type): numbers ranging from 1 to k_max, the max-
imum number of breakpoints, code for a k-point crossover, and k_max+1 codes for a
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block crossover). The number of breakpoints is also reported (#Breakpoints), as well
as the two selected chains (Chain_l and Chain_r).

d) All Exchange move history ($3=all_exchange)
At each All Exchange move call (Sweep), this file simply records the two chains involved
(Chain_l and Chain_r).

e) Delayed Rejection move history ($3=delayed_rejection)
As for the All Exchange history, this files records the sweeps at which a Delayed Rejection
move was selected (Sweep) and the two chains involved (Chain_l and Chain_r).

f) g sampling history ($3=g)
This file provides the the sampled values for g (g) for each sweep (Sweep).

g) g adaptation history ($3=g_adaptation)
Each time the proposal for g is adaptively updated, this files records the current sweep
(Sweep), the acceptance rate for g since the last update (Acceptance_rate), and the
the log-standard deviation of the proposal distribution of g (log_proposal_std).

h) Temperature history1 ($3=temperature)
This file records the sweep at which temperature tuning took place (Sweep) and the re-
sulting temperature for each chain.

i) Model history ($3=models)
This file describes the models visited along the MCMC run. For each sweep (Sweep),
it presents: the number of variables in the model (Model_size), the log (conditional)
marginal probability and the log (conditional) posterior probability (log_marg and
log_cond_post) and the variables included in the model (Model). All values are as
at the end of the sweep and only refer to the first non-heated chain.

j) Model size history ($3=model_size)
In this file the model size for each chain at the end of each sweep is reported.

k) Log (conditional) posterior history ($3=log_cond_post_prob)
This files reports the history of the log (conditional) posterior associated to each chain at
the end of every sweep.

1This file is not produced if the -iso_T flag is used (see Section 4.3).

14



6 Prior specification
Uncertainty is introduced by specifying suitable prior distributions for all unknowns. The prior den-
sity for the pγ × q matrix of non-zero regression coefficients Bγ is

Bγ ∼ N (Hγ,Σ) ,

where the correlation structure between the q columns of Bγ is set equal to the variance-covariance
matrix of Y for computational reasons. The prior density of Σ is

Σ ∼ IW (δ,Q) ,

where IW (·, ·) denotes the inverse Wishart distribution with δ = 3 andQ = kIq. The hyperparameter
k is automatically elicited by GUESS and both scalar parameters are stored in the Prior_param
class (see Classes/Prior_param.cc).

The matrix Hγ controls the correlation structure of the regression coefficients among the pγ pre-
dictors. In GUESS we opt for the g-prior setting

Hγ = g
(
XT
γ Xγ

)−1
,

where:

• g, the variable selection coefficient, is a scalar;

• g is either fixed (-g_set option) or unknown and sampled (implemented by default). In
the latter case, a prior density is specified, g ∼ Γ (1/2, n/2), and included in the MCMC
sampling scheme, where Γ (·, ·) indicates the Gamma density.

The main assumption underlying g-priors is that the correlation structure of the regression coefficients
among the p predictors replicates the covariance structure of the likelihood. The benefit is twofold:
first, the calculation of the marginal likelihood is simplified; secondly, it enables the variance of
each regression coefficient to adapt automatically to the scale of the covariates, which is of primary
importance when the X matrix incorporates heterogeneous predictors.

Hγ could alternatively be modelled using an independent prior (enabled by using -lambda op-
tion with a null or negative argument)

Hγ = gIp

assuming that there is no a priori correlation between the regression coefficients, with g either fixed
or unknown.

All hyper-parameters are stored in the Prior_param class (see Classes/Prior_param.cc).
Most of its members are automatically calculated from the two main user-defined parameters (see
Section 4):
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• E_p_gam (denoted Epγ in eq. 3), the a priori expected model size for the un-truncated model
distribution;

• SD_p_gam (denoted σpγ in eq. 3), the a priori standard deviation of the model size for the
un-truncated distribution.

• MAX_P_GAM_FACTOR (denoted Fpγ in eq. 3), the factor defining the maximal model size to
be considered pXmax from

pXmax = Epγ + σpγ × Fpγ (3)

7 Overview of the MCMC algorithm
1. Data loading and hyper-parameters initialisation

During this first step, GUESS will read the input matrices and the arguments entered by the
user (see Section 4.1 for a full listing of the input files). At that stage, all the C++ classes are
initialised and their members are set to their default/starting values. The initial value for the
latent binary vector for all chains is set equal to the variables selected by a stepwise regression
whose parameters are user-defined (see Table 1). When multiple outcomes are considered,
stepwise regression is performed on each outcome. Results are then merged taking the union of
the selected variables. It is possible to set the temperature of all chains equal to 1, in which case
all chains start from a different and randomly sampled model (see Section 4.3, option -iso_T
for details).

2. MCMC sampler
The MCMC sampler will run for n_sweeps sweeps. This value is user-defined through the
command line option -nsweep. The user also defines burn_in (through -burn_in com-
mand line option), the number of sweeps to be discarded to allow for burn-in (see Section 4.3).
At each sweep, the following sequences of moves will be repeated:

a) Local moves (see section 8.1)
At every Gibbs_n_batch sweep, a full Gibbs scan will be performed, on the first chain
only. This move is included to improve mixing. Next GUESS will perform a FSMH with
probability Prob_mut, which is defined by the user and stored in the Prior_param
class (member Prob_mut).

b) Global moves (see section 8.2)
If a local FSMH was not selected, a Crossover move will be performed. Next a Delayed
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Rejection or All Exchange move will be attempted. During the burn-in, only the Delayed
Rejection move is performed. Once the burn-in is completed, the All Exchange move is
also enabled and selected with probability 1-Prob_DR, where Prob_DR is defined by
the user and stored in the Prior_param class (member Prob_DR). Chains involved in
the exchange move are subsequently updated.

c) Sampling the selection coefficient g (see section 8.4)
In cases where the user chooses to sample g, rather than fixing it, g is also updated at each
sweep. Parameters of the proposal density are adapted along the MCMC run, specifically
every gAdObj.n_batch sweeps, where gAdObj is an object of class g_AdMH.

d) Temperature placement (during the burn-in only) (see section 8.3)
Every TempObj.nbatch sweeps (where TempObj is an object of class Temperatures),
the temperature ladder is updated such that the acceptance rate of the Delayed Rejection
move converges to its optimal value.

At each call of any of these operation, the relevant statistics are stored in the Move_monitor
object and kept until the end of the run, to feed in the final step of the program.

3. Post-processing
During the post processing step, all the summary statistics from the MCMC run are calculated.
All the functions needed for the post-processing are in the file
Routines/post_processing.cc. These calculations can be decomposed in following
steps:

a) Getting the unique list of visited models (function getUniqueList)
Using the history of all visited models during the MCMC run, this function returns the
unique list of models visited together with the frequency for each model, i.e. the number
of time each model was visited (in the first non-heated chain). If the null model (i.e. the
model without any predictors) or any of the models with a single predictor were not visited
during the MCMC run, these are added to the list.

b) Getting the marginal likelihood of each visited model (function getLogPost)
For all the models in the unique list defined at the previous step, the marginal likelihood
is calculated. In cases where g has been sampled, the marginal likelihood for each unique
visited model is computed by using the mean value of g across the MCMC sample (dis-
carding the burn in).

c) Getting the posterior probability for each visited model (function getAndSortPostGam)
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The posterior probability of a unique visited model γs, s = 1, . . . , S∗, is defined as

pγs =
exp {log p(γs|Y )}∑S∗

r=1 exp {log p(γr|Y )}
,

where log p (γs |Y ) is the log (conditional) posterior probability for each unique visited
model and S∗ is the number of unique models including the null model and all models
with a single covariate, even if they were not visited during the MCMC run.

d) Getting the posterior probability of inclusion for each predictor (function
getAndPrintMargGam)
The posterior probability of inclusion for each predictor j is defined as∑S

s=1 1{γs,j=1}pγs∑S
s=1 pγs

,

where the sums are over the S non-unique models visited by the sampler (S is equal to
the number of sweeps) and γs,j denotes the jth element of latent binary vector associated
with model s.

8 EMC implementation
The principle of GUESS is to explore the model space by iteratively sampling candidates for the binary
latent vector γ. In the Gibbs move, candidates are sampled from their full conditional distribution,
while in the Metropolis-Hastings move, candidates are sampled from their proposal distribution and
then are accepted or rejected with a probability mechanism.

In order to reliably explore the huge model space, we run several chains in parallel (the number
of chains is specified through NB_CHAINS in the parameter file), each of which is powered by a
different inverse temperature (scalar) that is specified by the user, with the aim of achieving a trade-
off between the speed and mixing of the MCMC algorithm. Higher temperatures flatten the posterior
density, allowing the algorithm to escape from local modes and favouring changes in the chain specific
γ configuration. The first chain is not heated, i.e. its temperature is set equal to 1. Heated chains are
only included to improve mixing, providing good proposals for the first chain’s γ configuration when
its state is tentatively swapped with the latent binary vectors of the heated chains. For this reason only
the information from the non-heated chain is recorded.

We describe below how the moves and the tempering scheme are implemented within GUESS.
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Making the most of the class-oriented structure of the C++ language, several of the moves and the
temperature scheme (see below) are defined by specific classes. These classes contains all the param-
eters required to perform the move (or the temperature adjustment). A move monitoring class (see
Classes/Move_monitor.cc) keeps a detailed record of the sequence of moves called during
the MCMC run and the results produced by the move (or the temperature adjustment).

8.1 Local moves
We define a local move to be any MCMC move that is restricted to a single chain. Suppose that our
local move occurs on a specific chain l, where l ∈ {1, 2, . . . , L} and L is the number of chains run in
parallel. For a given element j of γl, a local move consists in swapping the jth value of γl, from 1 to
0 or from 0 to 1, i.e. removing the variable j from the model if it was in at the previous step (1→ 0),
or adding it in if it was not (0→ 1).

Two types of local moves are implemented in GUESS:

1. Gibbs move
The Gibbs move is implemented in the function Gibbs_move (see file Routines/moves.cc):
it samples, for each j in a random order, a new value for γj,l from its full conditional distribution.
An exhaustive scan of this nature is time-consuming (one Gibbs move corresponds to the eval-
uation of p models), and to control the computational time, the user can define the number of
sweeps between two Gibbs moves (GIBBS_N_BATCH). For those sweeps where a Gibbs move
is selected, it is only performed on the first non-heated chain. As the Gibbs move requires only
one user-defined parameter, there is no specific associated C++ class. However, the number of
transitions 0→ 1 and 1→ 0 at each Gibbs move call is recorded in the Move_monitor class
(member Gibbs_move_history).

2. Fast-Scan Metropolis-Hastings (FSMH)
FSMH is a Metropolis-Hastings type-move and it is implemented in the function FSMH_move
(see file Routines/moves.cc). It proposes a swapping move (1 → 0 or 0 → 1) for
a randomly selected subset of elements of γl. The probability that a given element of γl is
selected depends on:

• the current value of the selected element;

• the current model size;

• ω, an hyper-parameter automatically calculated (and stored in the Prior_param class)
which dependents on E_p_gam, the user-defined a priori expected model size, SD_p_gam,
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the user-defined a priori standard deviation of the model size, and p, the number of pre-
dictors in X .

When the FSMH move is called, it is applied to all chains. As for the Gibbs move, no C++
classes are needed for the FSMH, and the following frequencies are updated and stored at each
call of the FSMH move in the Move_monitor class (members FSMH_*):

• the total number of models evaluated and the number of accepted moves;

• the number of 0→ 1 moves proposed and the number of accepted moves;

• the number of 1→ 0 moves proposed and the number of accepted moves.

At each sweep of the sampler the FSMH move is performed with probability Prob_mut,
which is user-defined (P_MUTATION) and stored in the Prior_param class (see Section 4).
If a local FSMH move is not selected for a particular sweep, then a global crossover move is
attempted instead.

8.2 Global moves
Global moves are aimed at swapping part or all of the information contained in the latent binary vec-
tors between the selected chains, allowing the algorithm to escape from local modes. In the following
we detail the two classes of global moves that we have implemented in GUESS: crossover moves and
exchange moves.

8.2.1 Crossover moves

Crossover moves are implemented in function Crossover_move (see file Routines/moves.cc).
A crossover move relies on the three following steps:

1. Selection of the chains
The two chains are selected according to normalized “Boltzmann weights” (calculated in the
function computeAndSampleLogCondPostBoltz, in the file Routines/moves.cc.
These weights depend on the (conditional) posterior density and temperature of each chain.
Among the population of chains, a group of chains with high weights are selected by applying
a user-defined threshold P_SEL (see Section 4) to the cumulative distribution of the ordered
Boltzmann weights. The sampling distribution is created by overweighting this group of chains
and renormalizing all probabilities. Two chains are then drawn at random according to this
distribution. This strategy is designed such that the two selected chains will give rise to a new
configuration of the latent binary vectors with higher posterior density.
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2. Crossover breakpoints
Two different ways of sampling the number and the position of the crossover breakpoints are
implemented in GUESS . At each sweep, the algorithm selects one of the k_max + 1 move
types at random with equal probability:

a) k-points crossover
In this case the number of breakpoints is uniformly sampled from 1 to k_max, the user-
defined maximum number of breakpoints. The breakpoint location(s) is(are) sampled
from a uniform distribution, and the chains’ latent binary vectors are swapped by shuffling
the regions between two breakpoints (see function recombine_chains in
Routines/moves.cc).

b) Block crossover
The block crossover swaps blocks of highly correlated variables between the two sampled
chains. Firstly, a “reference” variable j is uniformly sampled. Then, all pairwise Pearson
correlation coefficients ρ(Xj, X

′
j) j

′ = 1, . . . , p, j 6= j′, are calculated (see function
define_haplotype_bkpts in Routines/moves.cc). We retain for the block
crossover all variables whose pairwise correlation coefficient |ρ(Xj, X

′
j)| < ρ0, where the

threshold ρ0 is user-defined and stored in the prior setting class Prior_param, member
Prob_crsv_r. Finally each of these selected elements of the two chains are swapped
from one chain to another (see function recombine_haplotype in
Routines/moves.cc).

3. Acceptance probability
Regardless of the way chains are swapped, the (conditional) posterior probability is calculated
for each chain and the proposed move is accepted with a probability depending on:

• the difference in the (conditional) posterior probability induced by the move from the
original to the swapped chains;

• the difference in the Boltzmann’s weight induced by the move from the original to the
swapped chains;

• the temperature of the swapped chains.

Parameters of the crossover move are recorded in a C++ class (see Classes/CM.cc file) stor-
ing the maximum number of breakpoints (member n_max_breakpoint), the number of possible
crossover moves (member n_possible_CM_moves) and the vector of cumulative selection prob-
abilities for the k_max + 1 move types (member unit_move_pbty_cum).
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Crossover moves are monitored in the Move_monitor class. Each time a crossover move is se-
lected, the following summary statistics are updated and recorded (see Classes/Move_monitor.cc
file, member CM_history):

• the type of move: number from 1 to k_max code for the k-point crossover, and k_max + 1

codes for the block crossover move;

• the number of sampled breakpoints;

• the two selected chains;

• acceptance frequencies for the crossover moves over the whole MCMC run and for each sweep.

8.2.2 Exchange moves

Exchange moves can be viewed as an extreme case of the crossover move as the two selected chains
swap their whole latent binary vectors.

In GUESS two types of exchange moves are implemented:

1. All Exchange move
The All Exchange move is a Gibbs-type move, thus each pair of chains is selected according
to a renormalised probability which depends on the (conditional) posterior probability of each
chain. To guarantee the reversibility of the move, the case where no chains are swapped is also
considered. (See function All_exchange_move in Routines/moves.cc).

2. Delayed Rejection move
The Delayed Rejection move is implemented in the function DR_move (file
Routines/moves.cc). A first exchange move is proposed by selecting at random with
equal probability two chains. If the first proposed move is rejected, a second move involving
one of the two original chains and another chain which is adjacent in the temperature ladder is
proposed. That second proposed move is then accepted or rejected according to the acceptance
probability defined in the function DR_move.

A C++ class for the Delayed Rejection move is implemented (see Classes/DR.cc) and
records:

• the number of times the move is called (member nb_calls);

• the number of times the Delayed Rejection move involves adjacent chains (member
nb_calls_adj);
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• the number of proposed and accepted moves for each chain combination (members
mat_moves_proposed and mat_moves_accepted, respectively).

The optimal acceptance rate of the Delayed Rejection move is controlled during the burn-in pe-
riod through the temperature placement procedure (see Section 8.3) and accordingly the above
values are re-initialised every time a temperature placement takes place.

At each sweep, one of the above exchange moves is called: during the burn-in, only the Delayed
Rejection is enabled, and once the burn-in is completed, the Delayed Rejection move is selected
with a probability P_DR, which is user-defined and stored in the Prior_param class (member
Prob_DR). Whatever exchange move is used, the Move_monitor class records at each call the
two chains involved in the move.

8.3 Temperature placement
The temperature tuning during the burn in of the MCMC run is a key feature in GUESS: it aims at
easing the convergence of the algorithm and improving chain mixing. The temperature placement is
associated to a C++ class recording its parameter (see Classes/Temperatures.cc).

The temperature ladder implemented in GUESS is geometric. For a given chain l ∈ {1, . . . , L},
the lth temperature is defined as

tl = bal , (4)

where b is a scalar common to all chains, and al is the lth elements of a vector, with al = (l − 1)/a,
for some scalar a. Initial values for both scalars a and b can be user-defined and are stored in the
Temperatures class (members a_t_den and b_t, respectively). The resulting temperatures are
also stored in the member t.

We opted for an automatic placement of temperature ladder such that during the burn-in, the
value of b_t is tuned in order to control the acceptance rate of the Delayed Rejection moves and
keep it close to its optimal value (TEMP_OPTIMAL, stored in the Temperatures class, member
optimal). The initial value of b_t is user-defined (B_T) and the lth element of the vector a_t,
corresponding to chain l, is initialised to (l− 1)/a_t_den, where a_t_den is chosen among three
possible values entered by the user:

• A_T_DEN_INF_5K, the value of a_t_den if there are less than 5,000 predictors in X;

• A_T_DEN_5_10K, the value of a_t_den if there are between 5,000 and 10,000 predictors in
X;

• A_T_DEN_SUP_10K, the value of a_t_den if there are more than 10,000 predictors in X .
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Every time TEMP_N_BATCH Delayed Rejection moves have been performed, (where
TEMP_N_BATCH is user-defined - see Section 4 - and stored in the Temperatures class, mem-
ber nbatch) the temperature placement occurs and the parameter b_t is updated as follows (see
function temp_placement in Routines/moves.cc for details):

• if the acceptance rate for Delayed Rejection moves involving the first (non-heated) chain is 0,
or if the average model size in the most heated chain is greater than 10 times the number of
observations, the updated value for b_t, b_t∗, is

b_t∗ = max {M0,b_t− (b_t− 1) /2} ,

where M0 is the user-defined lower bound for b_t, (M_MIN), stored in the Temperatures
class, as the first element of member vector M;

• if the acceptance rate for Delayed Rejection moves is 1, the updated value for b_t, is

b_t∗ = min {M1,b_t− (b_t− 1) /2} ,

where M1 is the user-defined upper bound for b_t, (M_MAX), stored in the Temperatures
class, as the second element of member vector M;

• if the acceptance rate for Delayed Rejection moves is neither neither 0 nor 1 but below the
optimal value (Temperatures.optimal), the updated value for b_t, is

b_t∗ = max
{
M0, 2

log2(b_t)−δb
}
,

where δb is automatically calculated at the initialisation of the Temperatures class using
M0, M1, the length of the burn-in and nbatch, and stored as the member delta_n in the
Temperatures class (see Classes/Temperatures.cc);

• if the acceptance rate for Delayed Rejection moves is neither 0 nor 1 but above the optimal
value (Temperatures.optimal), the updated value for b_t, is

b_t∗ = min
{
M1, 2

log2(b_t)+δb
}
.

Temperatures are then updated, based on that new value for b_t, according to (4). The new temper-
ature ladder is stored in the Move_monitor class (member temperature_history).
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8.4 Sampling the selection coefficient
When the variable selection coefficient g is not fixed, it is included in the MCMC sampling scheme
and its values are sampled using an adaptive Metropolis-within-Gibbs algorithm. At each sweep, a
new candidate value for g, g′, is proposed. To ensure g > 0, log (g′) is sampled from

N
(
log (g) , els

)
,

where g is the value of the variable selection coefficient in the the previous sweep and ls is the
log standard deviation of the proposal density for g. The value of ls is user-defined (G_ADMH_LS)
and stored in the g_AdMH class (member g_AdMH.ls, see Classes/g_AdMH.cc file). The
candidate value g′ is then accepted/rejected with a probability which depends on the change in the
(conditional) posterior probability over all chains induced by the proposed change in the value of g.
The acceptance probability also depends on the temperature of each chain (see function sample_g
in Routines/moves.cc file).

Along the MCMC run, the value of ls is adapted to control the acceptance rate of the Metropolis-
within-Gibbs sampler and keep it close to an optimal values (which is user-defined G_ADMH_OPTIMAL
and stored in the g_AdMH class, member optimal). Every n_batch sweeps – which is also de-
fined by the user (G_N_BATCH) and stored in the g_AdMH class (member n_batch), depending on
the acceptance rate over the past n_batch sweeps, the value of ls is updated as follows:

• if the acceptance rate for g is below the optimal value, the updated value for ls, ls∗ is

ls∗ = max {G0,ls− δ} ,

where, G0, the lower bound for ls, is either specified by the user (G_M_MIN), or by default is
automatically set to − log(p)/2 at the initialisation of the g_AdMH class, and stored as the first
element of a vector (member M of the g_AdMH class). Similarly, G1, the upper bound for ls
is either user-specified (G_M_MAX) or set to log(p)/2 and stored as the second element of the
vector M in the g_AdMH class. The value of δ, depends on the current sweep of the sampler (to
ensure ergodicity through diminishing adaptation) and also a constant δg which is calculated at
the initialisation of the g_AdMH class using G0, G1, the length of the burn-in and n_batch
and stored as the member delta_n (see Classes/g_AdMH.cc);

• if the acceptance rate for g is above the optimal value (g_AdMH.optimal), the updated value
for ls, ls∗ is

ls∗ = max {G1,ls + δ} ,

where, G1 and δ are defined above.
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The history of both g and its parameter ls are recorded in the Move_monitor class (members
g_sample_history and g_adapt_history, respectively).
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Variable name Default value Description Ref.
General parameters 6

<MAX_P_GAM_FACTOR> 10 The factor specifying the maximal model size from equation (3). 6

Parameters of the stepwise regression
<N_P_VALUE_ENTER> 0.01 The maximum nominal p-value for a term to be added.

<N_P_VALUE_REMOVE> 0.01 The minimum nominal p-value for a term to be removed.

Setup parameters for the moves
<GIBBS_N_BATCH> 500 Number of sweeps between two full Gibbs scans. 8.1-1

<P_MUTATION> 0.5 The probability to perform the FSMH move at each sweep. 8.1-2

<P_SEL> 0.5 The threshold on the cumulative Boltzmann weights. 8.2.1

<P_CSRV_R> 0.375 The threshold for the correlation coefficient ρ0 to be considered
in the block crossover move.

8.2.1

<K_MAX> 2 Maximum number of breakpoints in the crossover move. This
number also defines the number of different crossover moves
enabled.

8.2.1

<P_DR> 0.5 The probability to perform a Delayed Rejection move among the
two possible exchange moves.

8.2.2

<G_ADMH_OPTIMAL> 0.44 The optimal acceptance rate for g. 8.4

<G_N_BATCH> 100 The number of sweeps between two adaptations of the standard
deviation of the proposal for g.

8.4

<G_ADMH_LS> 0 Initial value for the log standard deviation of g proposal. 8.4

<G_M_MIN> − log p/2 Lower bound for the log standard deviation of g proposal. 8.4

<G_M_MAX> log p/2 Upper bound for the log standard deviation of g proposal. 8.4

<B_T> 2 Initial value for the argument b for the temperature ladder. 8.3

<A_T_DEN_INF_5K> 2 Initial value for the argument a for the temperature ladder. This
value is considered if p < 5, 000.

8.3

<A_T_DEN_5_10K> 4 Initial value for the argument a for the temperature ladder. This
value is considered if 5, 000 ≤ p < 10, 000.

8.3

<A_T_DEN_SUP_10K> 2 Initial value for the argument a for the temperature ladder. This
value is considered if p ≥ 10, 000.

8.3

<TEMP_N_BATCH> 50 Number of Delayed Rejection moves between temperature
placement.

8.3

<TEMP_OPTIMAL> 0.5 Optimal acceptance rate for the Delayed Rejection move. This
value is used in the temperature placement.

8.3

<M_MIN> 1.0 Lower bound for the value of b_t in temperature placement. 8.3

<M_MAX> 4.0 Upper bound for the value of b_t in temperature placement. 8.3

Table 1: Tags that can appear in the -par parameter file.
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