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Gene expression data

We work with possibly replicated gene expression measures,
often from Affymetrix gene chips. Data are {Ygsr}, indexed
by

• replicates r = 1, 2, . . . , Rs

• conditions s = 1, 2, . . . , S, and

• genes g = 1, 2, . . . , n

Typically Rs is very small, S is much smaller than n, and
the ‘conditions’ represent different subjects, different
treatments, or different experimental settings.
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Rats CNS development

E11 E13 E15 E18 E21 P0 P7 P14 A

Embryo:
Days since conception

PostNatal: 
Days since birth

Adult

Wen et al (PNAS, 1998) studied development of central
nervous system in rats: mRNA expression levels of 112
genes at 9 time points.
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Rats data, normalised
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Wen et al found clusters (waves) characterising distinct
phases of development. . .
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Rats data: Wen partition
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Yeast cell cycle data

Data from Cho et al (Mol. Cell, 1998) (can also be found in
R som package). Yeast culture synchronised in G1, then
released and RNA collected at 10 minute intervals over 160
minutes (≈ two cell cycles). 6601 genes × 17 time points.
t = 90 excluded because of scaling difficulties.

The biological interest is in identifying genes that are up- or
down-regulated during the key phases of the cell cycle
(early G1, late G1, S, G2 and M), some of which may be
involved in controlling the cycle itself.
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Yeast data, normalised
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Yeast cell cycle

We have data on percentages of cells in each of three
phases of growth (unbudded/small-budded/large-budded).
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Yeast data, cell phase statistics basis
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Parametric expression profiles

We suppose there is a k-dimensional (k ≤ S) covariate
vector xs describing each condition, and model parametric
dependence of Y on x, whilst regarding genes as a priori
exchangeable, seeking common patterns across s under a
nonparametric model for clustering.

Although other variants are easily envisaged (and we see a
generalisation later), we suppose initially that

Ygsr ∼ N(x′sβg, τ
−1
g ), independently

where θg = (βg, τg) ∈ Rk+1 are drawn i.i.d. from a
distribution G, where in turn G has a Dirichlet process
prior:

G ∼ DP (α,G0)
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The Dirichlet process - view 0

Given a probability distribution G0 on an arbitrary measure
space Ω, and a positive real α, we say the random
distribution G on Ω follows a Dirichlet process,

G ∼ DP (α,G0)

if for all partitions Ω =
⋃m

j=1Bj (Bj ∩Bk = ∅ if j 6= k),
and for all m,

(G(B1), . . . , G(Bm)) ∼ Dirichlet(αG0(B1), . . . , αG0(Bm))

Even if G0 is continuous, G is a.s. discrete, so i.i.d. draws
{θg, g = 1, 2, . . . , n} from G exhibit ties.
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The Dirichlet process - view 0(ctd.)

α measures concentration: given i.i.d. draws
{θg, g = 1, 2, . . . , n} from G,

• As α→ 0, all θg are equal, drawn from G0.

• As α→∞, the θg are drawn i.i.d. from G0.
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The Dirichlet process - view 1

Sethuraman and Tiwari’s ‘stick-breaking’ construction:

• draw θ?
j ∼ G0, i.i.d., j = 1, 2, . . .

• draw Vj ∼ Beta(1, α), i.i.d., j = 1, 2, . . .

• define G to be the discrete distribution putting
probability (1− V1)(1− V2) . . . (1− Vj−1)Vj on θ?

j

• draw θg i.i.d from G, g = 1, 2, . . . , n.
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The Dirichlet process - view 2

Finite mixture model
∑

j wjg0(·|θ?
j ) with Dirichlet weights:

• Draw (w1, w2, . . . , wk) ∼ Dirichlet(δ, . . . , δ)

• Draw cg ∈ {1, 2, . . . , k} with P{cg = j} = wj , i.i.d.,
g = 1, . . . , n

• Draw θ?
j ∼ G0, i.i.d., j = 1, . . . , k

• Set θg = θ?
cg

Let k →∞, δ → 0 such that kδ → α.

G is invisible in view 2.
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The Dirichlet process - view 3

Partition model: partition {1, 2, . . . , n} =
⋃d

j=1 Cj at
random, so that

p(C1, C2, . . . , Cd) =
αdΓ(α)

∏d
j=1(nj − 1)!

Γ(α+ n)

where nj = #Cj . (NB preference for unequal cluster
sizes!) Draw θ?

j ∼ G0, i.i.d., j = 1, . . . , d, and set θg = θ?
j

if g ∈ Cj .

G is also invisible in view 3.
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The Dirichlet process - reprise

Genes are clustered, according to a tractable distribution
parameterised by α > 0, and within each cluster the
regression parameter/precision pair θ = (β, τ) is drawn
i.i.d. from G0.

We take a standard normal–inverse Gamma model:
θ = (β, τ) ∼ G0 means

τ ∼ Γ(a0, b0) and β|τ ∼ Nk(m0, (τt0)−1I)

This is a conjugate set-up, so that (β, τ) can be integrated
out in each cluster.

How nonparametric is that?
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Multiple notations for partitions

• c is a partition of {1, 2, . . . , n}

• clusters of partition are C1, C2, . . . , Cd

(d is the degree of the partition):⋃d
j=1 Cj = {1, 2, . . . , n}, Cj ∩ Cj′ = ∅ if j 6= j′

• c is the allocation vector: cg = j if and only if g ∈ Cj

We are abusing notation by mixing up allocations and
partitions: labelling of Cj is arbitrary, likewise values of
{cg}.
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‘Micro-posterior’ and marginal likelihoods

Within-cluster parameter posteriors:

τ?
j |Y ∼ Γ(aj , bj)

β?
j |τ?

j , Y ∼ Nk(mj , (τ?
j tj)

−1)

where

aj = a0 + 1/2#{gsr : cg = j}
bj = b0 + 1/2(YCj −XCjm0)′(XCj t

−1
0 X ′

Cj
)−1(YCj −XCjm0)

mj = (X ′
Cj
XCj

+ t0I)−1(X ′
Cj
YCj

+ t0m0)

tj = X ′
Cj
XCj + t0I

Marginal likelihoods p(YCj
) are multivariate t distributions.
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DP mixture MCMC

There is a huge literature on MCMC for Dirichlet mixture
models (Escobar, West, MacEachern, Mueller, Neal, Green,
Richardson, . . . ).

Non-conjugate cases demand keeping (β, τ) pairs in state
vector, handled through various augmentation or reversible
jump schemes.

In the conjugate case, it is obviously appealing to target
Markov chain on posterior solely of the partition, and
generate (β, τ) pairs from micro-posterior as needed. See
also recent work by Nobile and Fearnside.
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The incremental algorithm
(Gibbs sampler/Pólya urn/

Weighted Chinese restaurant process)

MCMC on posterior for partition, limited to re-allocating
single gene at a time (single-variable Gibbs sampler for cg).

We allocate Yg to a new cluster C? with probability

∝ p(cg→?|α)× p(Yg|ψ),

cg→? denotes the current partition c with g moved to C?.
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and to cluster C−g
j with probability

∝ p(cg→j |α)× p(YC−g
j ∪{g}|ψ)/p(YC−g

j
|ψ).

cg→j denotes the partition c, with g moved to cluster Cj .

The ratio of marginal likelihoods p(Y |ψ) can be interpreted
as the posterior predictive distribution of Yg given those
observations already allocated to the cluster, i.e.
p(Yg|YC−g

j
, ψ) (= multivariate t for NIG setup).
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For Dirichlet mixtures, we have

p(c|α) =
αdΓ(α)

∏d
j=1(nj − 1)!

Γ(α+ n)

where nj = #Cj and c = (C1, C2, . . . , Cd), so the
re-allocation probabilities are explicit, and take a simple
form.

But the same sampler can be used for many other partition
models.
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When the incremental sampler applies

All we require of the model are that

(a) A partition c of {1, 2, . . . , n} is drawn from a
distribution with parameter α

(b) Conditionally on c, parameters (θ1, θ2, . . . , θd) are
drawn independently from a distribution G0 (possibly
with a hyperparameter ψ)

(c) Conditional on c and on θ = (θ1, θ2, . . . , θd),
{y1, y2, . . . , yn} are drawn independently, from not
necessarily identical distributions
p(yi|c, θ) = fi(yi|θj) for i ∈ Cj .
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Examples

p(cg→?|α) and p(cg→j |α) are simply proportional to

• α and #C−g
j for the DP mixture model

• (k − d(c−g))δ and #C−g
j + δ for the

Dirichlet-multinomial finite mixture model

• θ + αd(c−g) and #C−g
j − α for the Pitman–Yor

Poisson–Dirichlet process

So the ease of using the Pólya urn/Gibbs sampler is not a
reason to use DPM!
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Simultaneous re-allocation

There is no need to stick to updating only one cg at a time:
the idea extends to simultanously re-allocating any subset
of genes currently in the same cluster.

The notation is a bit cumbersome, but again the subset
forms a new cluster, or moves to an existing cluster, with
relative probabilities that are each products of two terms:

• the relative (new) partition prior probabilities, and

• the predictive density of the moved set of gene
expressions, given those already in the receiving
cluster
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An asymmetric Dirichlet process mixture
(’top table’ model)

In gene expression, natural to suppose a ‘background’
cluster that is not a priori exchangeable with the others.

Take ‘limit of finite mixture’ view, and adapt it:

• Draw (w0, w1, w2, . . . , wk) ∼ Dirichlet(γ, δ, . . . , δ)

• Draw cg ∈ {0, 1, . . . , k} with P{cg = j} = wj , i.i.d.,
g = 1, . . . , n

• Draw θ?
0 ∼ G00, θ

?
j ∼ G0, i.i.d., j = 1, . . . , k

• Set θg = θ?
cg

Let k →∞, δ → 0 such that kδ → α, but leave γ fixed.
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Top-table Dirichlet process
incremental sampler

When re-allocating gene g, there are three kinds of choice:
a new cluster C?, the ‘top table’ C0, or a regular cluster
Cj , j 6= 0: the corresponding prior probabilities

p(cg→?|α), p(cg→0|α) and p(cg→j |α)

are proportional to

α, (γ + #C−g
0 ) and #C−g

j

for the asymmetric DP mixture model.

The model and sampler can be extended to have several
classes of cluster, with allocations exchangeable within
classes, and different parameter priors G0 in each class.
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Bayesian inference about partitions

The full posterior distribution – computed by sampling –
tells us all about the partition and parameters: how to
report a point estimate of the partition alone?

The posterior mode (MAP) partition is a common choice:
but why? We would usually shy away from using posterior
models in such a high-dimensional problem.

Here we consider going the extra mile – and obtaining
optimal Bayesian clustering under a pairwise coincidence
loss function.
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Loss functions for clustering

So long as our formulation is exchangeable with respect to
labelling of both items and clusters, we are confined to loss
functions with the same invariances. These constraints, and
issues of tractability, lead us to a pairwise coincidence loss
function: if the true partition is c and you declare it to be ĉ
you incur a loss L(c, ĉ) =∑
1≤g<g′≤G

{aI[cg = cg′ , ĉg 6= ĉg′ ] + bI[cg 6= cg′ , ĉg = ĉg′ ]}

The posterior expected loss is E(L(c, ĉ)|y) =∑
{aP (cg = cg′ |y)I[ĉg 6= ĉg′ ] + bP (cg 6= cg′ |y)I[ĉg = ĉg′ ]}
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Loss functions for clustering (2)

After a little manipulation, we find minimising expected loss
is the same as maximising

`(ĉ) =
∑

1≤g<g′≤G

{(ρgg′ −K)I[ĉg = ĉg′ ]}

=
∑

j

∑
g,g′∈ bCj

(ρgg′ −K)

where K = b/(a+ b) ∈ [0, 1] and ρgg′ = P (cg = cg′ |y).
Note this requires only saving the posterior pairwise
coincidence probabilities from the MCMC run.

How to optimise this?
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Toy example

Suppose there are n = 5 items/elements, and that the
partitions and corresponding probabilities are

c1 = {{1, 2, 3} , {4, 5}} P (c1) = 0.5
c2 = {{1, 2} , {3} , {4, 5}} P (c2) = 0.2
c3 = {{1, 2} , {3, 4, 5}} P (c3) = 0.3

The ρij matrix is

1 2 3 4 5
1 − 1 0.5 0 0
2 − − 0.5 0 0
3 − − − 0.3 0.3
4 − − − − 1
5 − − − − −
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Toy example
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Toy example
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Binary integer programming

To maximise

`(ĉ) =
∑

1≤g<g′≤G

{(ρgg′ −K)I[ĉg = ĉg′ ]}

over choice of partitions ĉ, we first treat this as a
mathematical programming problem in the binary variables
xgg′ = I[ĉg = ĉg′ ]. We aim to maximise

∑
(ρgg′ −K)xgg′

subject to numerous constraints ensuring ĉ is a partition. It
is necessary and sufficient that for all triples {g, g′, g′′},
xgg′ = 1 implies xgg′′ = xg′g′′ , and these constraints can
be represented as algebraic inequalities
xgg′ + xgg′′ − xg′g′′ ≤ 1 for all {g, g′, g′′}.
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Binary integer programming (2)

The optimisation is now in the form of a standard linear
integer programme in binary variables:

maximise
`(ĉ) =

∑
(ρgg′ −K)xgg′

subject to all

xgg′ ∈ {0, 1} and xgg′ +xgg′′ −xg′g′′ ≤ 1 for all {g, g′, g′′},

and on a small scale can easily be solved with standard
(free) software.

This solution scales very badly with number of items
(genes)! In fact, the problem is known to be NP hard.
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A simple heuristic

We have had some success with a very simple heuristic –
iteratively removing items (genes) from the partition
one-by-one and reallocating them so as to maximise the
objective function `(ĉ) =

∑
(ρgg′ −K)xgg′ at each step.
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Simultaneous approximate optimisation
for all K

K is the ratio of elementary costs b/(a+ b), and we would
be interested in finding the optimal partition for all K, at
least in some interval. As would be anticipated, the
optimum varies with K but remains constant on intervals
of K. (But there need be no monotonicity of the optimal
partition with respect to K).

To get the flavour of our approach to simultaneous
optimisation, note the form of our objective function
`(ĉ) =

∑
(ρgg′ −K)xgg′ – this is a non-increasing linear

function of K.
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Simultaneous approximate optimisation
for all K (2)∑

(ρgg′ −K)xgg′ is a non-increasing linear function of K,
and so the maximum of such functions over any candidate
set C of partitions ĉ is a non-increasing convex polygonal
function of K, that is non-decreasing in C with respect to
set inclusion.

For any C, sup
bc∈C

∑
(ρgg′ −K)xgg′ is characterised by a

smaller subset ∂C ∈ C of ‘active’ partitions that define the
convex hull, and our algorithm proceeds by iteratively
adding new partitions to C, updating its representation ∂C
as needed. The new partitions for consideration are
generated by single-gene reallocations to partitions in the
current active set, as in the simple heuristic.
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A 10-item example

The ρij matrix is

1 2 3 4 5 6 7 8 9 10
1 − 0.1551 0.7426 0.2610 0.3069 0.9572 0.0990 0.6533 0.3563 0.4436
2 − − 0.8502 0.5840 0.8307 0.8146 0.4835 0.8732 0.1441 0.3150
3 − − − 0.9333 0.4686 0.5256 0.0269 0.3754 0.4597 0.9801
4 − − − − 0.5194 0.7063 0.9799 0.4827 0.9398 0.0252
5 − − − − − 0.8931 0.7275 0.3576 0.8293 0.3555
6 − − − − − − 0.4834 0.0305 0.4134 0.6203
7 − − − − − − − 0.1808 0.8813 0.6506
8 − − − − − − − − 0.0306 0.1819
9 − − − − − − − − − 0.6311
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l (ĉ) vs K

50



A 10-item example

0
5

10
15

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
K

l(
ĉ)

l (ĉ) vs K

51
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ĉ)
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A 10-item example
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A 10-item example
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A 10-item example
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A 10-item example
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Now we could afford to cluster 1000 items
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LS: log(Time) =  −18.4951  +  4.0429 log(n)

log(Time) vs log(n)

Time = 3.46 hrs if n = 1000
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Rats CNS development

E11 E13 E15 E18 E21 P0 P7 P14 A

Embryo:
Days since conception

PostNatal: 
Days since birth

Adult

Wen et al (PNAS, 1998) studied development of central
nervous system in rats: mRNA expression levels of 112
genes at 9 time points.
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Rats data, normalised
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Rats: stage+stage:day model

Piecewise linear time dependence:

X =



1 11 0 0 0
1 13 0 0 0
1 15 0 0 0
1 18 0 0 0
1 21 0 0 0
0 0 1 0 0
0 0 1 7 0
0 0 1 14 0
0 0 0 0 1


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Rats: stage+stage:day model
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Wen’s partition is substantially worse than optimal for any
K.
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MAP vs. optimal clustering

How optimal is MAP partition?

How probable is optimal partition?

Simulation (100 replicates) of samples of size n = 100 from
4–component bivariate normal mixture, no covariates,
S = k = 2. We use DPM prior.

MAP approximated by a naive stochastic search (SS) and
by (deterministic) Bayesian hierarchical clustering procedure
of Heard, Holmes and Stephens (BH).
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MAP vs. optimal clustering

Figure 4: log (φ (p)) for those three procedures for Model 4
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MAP vs. optimal clustering

Figure 8: `(p, K) for those three procedures for Model 4
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Summary

• flexible model that combines

– parametric dependence on condition-specific
covariates

– non-parametric clustering of genes, allowing
baseline category

• conjugate specification greatly facilitates computation

• wider applicability of ‘incremental’ samplers

• possibility to approximate optimal clustering for
certain loss functions
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