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Outline

• Introduction:

– Usefulness of gene expression arrays for risk analysis in multifactorial

diseases such as cancer

– Statistical issues related to gene expression data

• Stability: How stable is a gene expression profile when the training data are

varied (i.e. resampled)?

• Resampling study: Assess prediction accuracy and stability for variety of

classification methods and several data sets

• Alternative: Bayesian variable selection
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Introduction

Gene expression microarrays allow to measure the simultaneous mRNA expression

of thousands of genes.

Studies have different objectives:

1. Gene expression association studies: relate gene expression changes to

biological outcomes by comparing samples under different conditions

2. Gene prediction: building molecular profiles based on gene expression which

can characterise different phenotypes (e.g. clinical outcomes), usually binary

3. Gene classification: finding new subgroups or entities (e.g. subtypes of

tumours, typology) in an unsupervised manner

Here we are concerned with Aim 2 and the building of a set of parsimonious models

for binary phenotypes.
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Introduction

Specificity of the context of application

• In genomic applications, there are typically many more covariates than samples:

large p (thousands of genes), small n (50 to 100 samples) paradigm →

Multi-collinearity of genes implies there is no unique best solution, but many

alternative models have similar explanatory power
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Introduction

Specificity of the context of application

• In genomic applications, there are typically many more covariates than samples:

large p (thousands of genes), small n (50 to 100 samples) paradigm →

Multi-collinearity of genes implies there is no unique best solution, but many

alternative models have similar explanatory power

• Complex dependence structure between genes linked to underlying biological

pathways and networks.

• Sparseness: Out of the thousands of genes usually only a few are expected to

be related to the response.

• Need to estimate uncertainty in molecular profiles related to the role of each

gene (probabilities, standard errors, ...)
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Introduction

Competing goals

• Make good predictions

• Figure out genes which play an important role
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Introduction

Competing goals

• Make good predictions

• Figure out genes which play an important role

What makes a good molecular profiling method?

• Prediction accuracy: low generalisation error (robustness)

• Interpretability

– Parsimony: small number of genes that can be followed up in biological

experiments

– Interpretable model: explicit modelling of relationship between genes and

response (no “black box”)

– Stability: little variation in resulting profile when training data are varied

(resampled)
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Introduction

Types of approaches

• Methods based on a sequence of univariate steps

• Multivariate regression models with regularisation/shrinkage:

– penalised likelihood methods (ridge, lasso, elastic net,...)

– fully Bayesian approach with mixture priors on coefficients → Bayesian

variable selection

• Multivariate machine learning approaches: e.g. support vector machines,

tree-based methods (random forests), bagging and boosting, neural nets,...

Prior expectations Accuracy Parsimony Structure explicit? Stability

Univariate low? medium medium ?

Regression with shrinkage high? high -low high ?

Machine learning high? low -high low (initially) ?
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Stability

How to assess the stability of a profiling method?

• Using resampling methods (bootstrap, repeated training/validation set splits):

generate m training data sets from original data set

→ generate m profiles and assess degree of overlap
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Stability

How to assess the stability of a profiling method?

• Using resampling methods (bootstrap, repeated training/validation set splits):

generate m training data sets from original data set

→ generate m profiles and assess degree of overlap

•

Between any two of m profiles:

2 × 2-contingency table

→ size of intersection O11 = #(Z1 ∩ Z2)

Z1

1 0

Z2 1 O11 O10 O1.

0 O01 O00 O0.

O.1 O.0 p

• Need to relate O11 to profile sizes O1. and O.1 to make comparisons between

methods possible if their profile sizes are different
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Stability

Approaches used in microarray literature (e.g.)

• Average size of intersection between any two of all m profiles (Ein-Dor et al.

2005): 1

(m

2 )

∑

O11
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Approaches used in microarray literature (e.g.)

• Average size of intersection between any two of all m profiles (Ein-Dor et al.

2005): 1

(m

2 )

∑

O11

• Proportion of variables included in > 50% of all m profiles (Michiels et al.

2005): generalisation of intersection

• Ratio observed intersection to expected intersection (Blangiardo and

Richardson 2007) assuming independence between sets

- either assuming fixed marginal values (O11 ∼ Hypergeometric(O1., O.1, p)):

re = O11/(O1.O.1/p)

- or multinomial distribution for (O11, O10, O01) with fixed p
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Stability

Approaches used in microarray literature (e.g.)

• Average size of intersection between any two of all m profiles (Ein-Dor et al.

2005): 1

(m

2 )

∑

O11

• Proportion of variables included in > 50% of all m profiles (Michiels et al.

2005): generalisation of intersection

• Ratio observed intersection to expected intersection (Blangiardo and

Richardson 2007) assuming independence between sets

- either assuming fixed marginal values (O11 ∼ Hypergeometric(O1., O.1, p)):

re = O11/(O1.O.1/p)

- or multinomial distribution for (O11, O10, O01) with fixed p

• Number of profiles in which a gene is included → average over all genes, that

are selected at least once (Dı́az-Uriarte and Alvarez de Andrés. 2006)
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Stability

Relate O11 to profile sizes O1.

and O
.1

1. Ratio of observed intersection to expected intersection under assumption

of independence between sets:

re =
O11

O1.O.1/p

Problems:

• Assumes fixed margins → only true for univariate filtering methods where

profile size is fixed in advance.

• In resampling setup, profiles are not independent because of the overlap in

training data sets (even if there is no link to the response).

→ Denominator underestimates size of expected random intersection.

• If profile sizes are small, small denominator leads to unreliable estimates of

ratio.
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Stability

2. Similarity measures (e.g. environmental sciences) for binary data, which are

asymmetric (do not include number of negative matches O00):

e.g. Jaccard (1901), Dice (1945), Ochiai (1957)

• Jaccard index:

rj =
#(Z1 ∩ Z2)

#(Z1 ∪ Z2)
=

O11

O1. + O.1 − O11

• Advantage: fulfills all criteria of similarity measures, in particular rj ∈ [0, 1]

• Does not take random overlap into account. Same problem as before:

expected random overlap is larger than under independence of training sets.

→ Simulations
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Stability

Simulations: Jaccard index

Ovarian cancer data with randomised reponse variable

Jaccard index median (inter-quartile range) of all
(

m
2

)

pairs of profiles
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Stability

Comments

• Hard to adjust stability measures for expected size of intersection under null in

resampling setup

→ Measures for different methods only comparable if profiles are of same size

• Often high correlations between genes expected due to their joint involvement in

biological processes and co-regulation etc:

Replacing a gene X1 in one by a near-perfectly correlated gene X2 in another

profile does not necessarily mean decreased stability

→ Use of “fuzzy intersections” accounting for correlations?
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Resampling study

Study setup

Resampling scheme: Multiple random validation (Michiels et al. 2005):

• Divide data randomly into training and validation data (ratio 2:1).

• Repeat 50 times (i = 1, ..., 50)

• For each i: Fit model using training data and find molecular profile across a range

of parameter values

• Compare prediction performance on validation data and make-up (“which genes

selected”) of resulting 50 profiles.
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Resampling study

Data

p n Response Clinical Independent

(binary) covariates validation data

Breast cancer 4770 97 survival yes yes

(van’t Veer 2002) (dichotomised) (Vijver 2002)

Ovarian cancer 7129 104 histology no yes

(Schwartz 2002) (Lu 2004)

Leukaemia 7129 72 tumour type no no

(Golub 1999)

Prostate cancer 12625 102 tumour vs. no no

(Singh 2002) normal

Acute myeloid leuk- 22283 273 normal vs. abnor- no no

aemia (Valk 2004) mal karyotype
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Resampling study

Classification methods (logistic regression/decision tre es)

• Univariate:

Select genes by estimated effects
|β̂j |

s.e.(β̂j)
from univariate logistic regressions.

Use selected genes for classification:

– Nearest-centroid classification

– Diagonal linear discriminant analysis
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Classification methods (logistic regression/decision tre es)

• Univariate:

Select genes by estimated effects
|β̂j |

s.e.(β̂j)
from univariate logistic regressions.

Use selected genes for classification:

– Nearest-centroid classification

– Diagonal linear discriminant analysis

• Multivariate regression with penalty term: Maximise penalised log-likelihood

– Lasso regression (Tibshirani 1996): λ||β||1 = λ
∑p

g=1 |βg|

– Ridge regression (Hoerl and Kennard 1970): λ||β||2 = λ
∑p

g=1 β2
g

– Elastic net (Zou and Hastie 2005): λ1||β||1 + λ2||β||2
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Resampling study

Classification methods (logistic regression/decision tre es)

• Univariate:

Select genes by estimated effects
|β̂j |

s.e.(β̂j)
from univariate logistic regressions.

Use selected genes for classification:

– Nearest-centroid classification

– Diagonal linear discriminant analysis

• Multivariate regression with penalty term: Maximise penalised log-likelihood

– Lasso regression (Tibshirani 1996): λ||β||1 = λ
∑p

g=1 |βg|

– Ridge regression (Hoerl and Kennard 1970): λ||β||2 = λ
∑p

g=1 β2
g

– Elastic net (Zou and Hastie 2005): λ1||β||1 + λ2||β||2

• Multivariate machine learning:

– Random forests (Breiman 2001)

– Random forests with variable selection varSelRF (Dı́az-Uriarte 2006)
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Results: Validation errors and Jaccard index

Breast cancer Ovarian cancer
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Results: Validation errors and Jaccard index

Leukaemia Prostate cancer
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Results: Validation errors and Jaccard index

Acute myeloid leukaemia
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Results: Validation on independent data

Ovarian cancer data (Lu et al. 2004): % misclassifications in new data when using

genes found for Schwartz et al. (2002) in logistic regression

Complete profiles Genes in > 50%

(median over all profiles) of all profiles

Error median # Genes Error median # Genes

Naı̈ve classifier (all 38.1% 38.1%

into most frequent class)

Univariate 21.4% 5 21.4% 3

Lasso 16.7% 7 14.3% 5

Elastic Net 14.3% 7 14.3% 5

VarSelRF 21.4% 3 38.1% 2

Note: The same five genes appear in > 50% of profiles for all multivariate methods

(lasso, elastic net, varSelRF): S100P, ABP1, ANX4, CYP2C18, SPINK1
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Resampling study

Summary

• Sparsity-inducing methods perform better in terms of prediction than those

keeping all/most genes

• Elastic net has overall best prediction accuracy (both in resampling setup and in

independent data set), but is usually slightly less stable than lasso

• Caution when comparing Jaccard indices: model sizes differ

• Multivariate methods most stable when profiles are smallest, univariate method

most stable when they are largest

But: simulation study → Jaccard indices inflated for very large profiles

• Predictive performance of univariate methods only slightly worse than best

multivariate methods
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Alternative: Bayesian variable selection

Bayesian interpretation for lasso/ridge

Regression model with shrinkage prior on regression coefficient vector β:

• Ridge: MAP (maximum a posteriori) estimator with Gaussian prior

p(β|τ) = N(0, τIp), where τ = 1/(2λ)

• Lasso: MAP estimator with Laplace (double exponential) prior

p(β|τ) = Laplace(0, τIp), where τ = 2/λ2.

beta

pr
io

r 
de

ns
ity

−4 2 0 2 4

Ridge (q = 2): Gaussian prior

beta

pr
io

r 
de

ns
ity

−4 2 0 2 4

Lasso (q = 1): Laplace prior
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Alternative: Bayesian variable selection

BVS model with indicator variable γi =







1 variable i is included

0 variable i is excluded

Shape of prior to encourage parsimony:

• spike in zero (variable exclusion),

• heavy tails (variable inclusion).
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BVS model with indicator variable γi =







1 variable i is included

0 variable i is excluded

Shape of prior to encourage parsimony:

• spike in zero (variable exclusion),

• heavy tails (variable inclusion).
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E.g. Normal mixture prior

(George and McCulloch 1997):

βi|γi ∼ (1−γi)N(0, σ2v0γi
)+γiN(0, σ2v1γi

)

Here: Similar Bayesian variable selection

model in context of logistic regression (Holmes

and Held 2006), conditioning the model on the

components where γi = 1
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Alternative: Bayesian variable selection

• Advantage: Fully probabilistic framework → posterior probabilities for gene

variables to be selected. No resampling necessary to assess uncertainty in

selecting individual genes or models.

• But: Validation data still needed to estimate generalisation error (different aim)

• Markov chain Monte Carlo (MCMC) is used as a stochastic search algorithm to

find models with high posterior probability.

• Difficulties: Large scale of applications renders standard MCMC algorithms

impractical (full Gibbs sampling too time-consuming, and fast single-variable

addition/deletion algorithms mixing too slowly).

ICSMRA Lisbon- August 31, 2007 -23-



Alternative: Bayesian variable selection

There are many ways to improve on standard MCMC and to make Bay esian

variable selection (BVS) practicable.

For example:

• Block sampling: Employ the dependence structure among covariates to find

variables to update together in blocks - to construct Markov chains which can

move quickly around the vast model space.

• Metropolis-coupled MCMC (parallel tempering): Run parallel chains at higher

temperatures T to improve mixing and “borrow” better mixing by proposing

swaps between chains.
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Alternative: Bayesian variable selection

Results for ovarian cancer data: Same 5 genes from resamplin g study found.

Deviance trace shows convergence rate and when chain gets stuck in local optima.
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Alternative: Bayesian variable selection

Trace plots for γ: Mixing improves dramatically when using blocks/parallel chains.
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Summary

• Prediction accuracy is often not the only goal when estimating molecular profiles

→ interpretability is important

• → Regression framework: shrinkage methods that induce sparsity (elastic net,

lasso) do very well

• The uncertainty associated with genes being selected into a profile needs to be

estimated:

– either resampling framework (frequencies for gene inclusion)

– or Bayesian modelling (posterior probabilities for gene inclusion)

• Open problem: How best to assess the stability of molecular profiles?
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