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Introduction

Introduction
Microarray experiments and gene expression data have a number of characteristics
that make them attractive but challenging for Bayesian analysis

• Many sources of variability and low signal/noise ratio

• Variability at different levels (array specific, gene specific, ....)

⇒ accounting for uncertainty is important

• Need to borrow information, e.g. across genes, as typical experiments involve
few samples

⇒ Hierarchical modelling

• Masses of data

⇒ Need for a variety of data synthesis methods adapted to the level of
information processed (probe level signal, gene, posterior probabilities, ...)
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Introduction

Bayesian models have been developed to address some of these issues

Models have been formulated at different levels:

• Probe level models aiming to quantify the signal

• Differential expression models aimed at giving ‘useful gene lists’, accompanied
by a measure of false detection rate

• Clustering models of expression profiles aiming to uncover subgroups of genes
that co-vary across a range of conditions/treatments

⇒ c.f. Peter Green’s talk on Monday

• Methods for synthesing genes lists between different experiments

Cutting across all these developments:

• MCMC issues

• Model checking and criticism
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1 – BGX Bayesian Gene Expression

Modelling the signal from oligonucleotide arrays (Affymetrix
GeneChips)

Data:

Gene g characterised by probe set of J short oligos on array c,

– with Perfect match probes, PMjgc,

– and Mis-matched probes, MMjgc, designed to capture non-specific cross
hybridisation (but still containing some signal)

Aim :

1. Extract the ’true signal’ Sjgc and non specific hybridisation Hjgc from the pair
{PMjgc, MMjgc}

2. Summarise the expression of each gene by a posterior distribution that
combines information from the signal of all the probes {Sjgc, j = 1, . . . , J}

3. Account for array specific background
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1 – BGX Bayesian Gene Expression

BGX model Hein et al, Biostatistics, 2005, BMC Bioinformatics, 2006

Can be formulated for replicate arrays or single array per condition (below):

First level
PMjgc ∼ N( Sjgc + Hjgc, τ

2
c ),

MMjgc ∼ N(φSjgc + Hjgc, τ
2
c ).

Second level
log(Sjgc + 1) ∼ TN(µgc, σ

2
gc),

log(Hjgc + 1) ∼ TN(λc, η
2
c ).

where TN(µ, σ2) is the normal distribution with mean µ and variance σ2

truncated at 0

Prior structure

– Exchangeable hierarchical (lognormal) prior structure on the gene specific
variability: σ2

gc (with EB for the hyperparameters)

– weakly informative priors for the other parameters
Isaac Newton- December 2006 -6-



1 – BGX Bayesian Gene Expression

Inference from BGX

We obtain posterior distributions of expression levels µgc and of between
condition differences dg = µg1 − µg2 from which inference on differentially
expression genes can be drawn even with only one replicate per condition
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To rank genes:

• Use posterior probabil-
ity Prob(dg < 0)

(close to 0 or 1 for DE
expressed genes)

• Use E(dg)/SD(dg)
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1 – BGX Bayesian Gene Expression

Performance comparison

Comparison of ranking produced by BGX and GCRMA ( Wu & Irizarry 2006) on data
from Choe et al. (Genome Biology, 2005). ROC curves: sensitivity (TP/TP + FN)
versus FDR (FP /TP + FP) for all 9 single array comparisons.

6 Drosophila GeneChip arrays, two
conditions, 3 reps each.
14010 genes: 10150 non-expressed,
3860 spike-in. Of these: 2551 at same
conc, 1309 at different conc (FC 1.2-4,
same direction)
Note: many diff expressed genes,
more realistic data than other spike-in
studies

Blue: BGX, Red: GCRMA
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1 – BGX Bayesian Gene Expression

Inference from BGX: Estimating the proportion of DE genes

• Plot histogram of Prob(dg < 0)

• Use central part of the histogram
of Prob(dg < 0) to obtain empiri-
cal estimate of the null distribution
and proportion of null genes (in-
spired by Efron, JASA 2004)

• For within-condition, estimate of
DE genes near zero

• For between-condition, estimate
of DE genes $ 700: i.e. picks up
$ 50% of TP with an FDR $ 6%
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MCMC issues

MCMC issues

Full conditional of many parameters is non standard

Use Random Walk Metropolis, for example to update Sgjc and µgc

In a typical array, more than 200 000 parameters are being updated, with a wide
range of variability

How to choose the width γ of the RW proposal for each probe ?

⇒ Experiment with adaptive MCMC (Rosenthal and Roberts, 2006):

Convergence of the chain is preserved if use a sequence γn of values for γ such
that:

• Each kernel Pγ has the right stationary distribution

• Diminishing adaptation: total variation distance between the successive kernels
Pγn

→ 0 (in probability)

• Bounded convergence condition
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MCMC issues

Simple adaptive scheme

For each variable, Rosenthal and Roberts suggests:

• Start with a RW with normal increment N(0, exp(2s)),

• Choose a sequence δ(n) → 0

[for ex. R& R experiment with δ(n) = min(0.01, n−1/2)]

• After the nth batch of 50 sweeps, compute the acceptance rate (AR) over last
batch of 50 sweeps

• Adapt the RW proposal by adding or subtracting δ(n) to s, following whether
the AR is greater or less than 0.44
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MCMC issues
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MCMC issues
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MCMC issues
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2 – Mixture models for Differential expression

Mixture models for differential gene expression

A widely used approach to address differential expression problems is to model the
expression levels as a mixture of distributions (Lonnstedt & Speed, 2003, ...,
Gottardo, 2006)

• latent quantities δg characterising the underlying difference between the
conditions are introduced

• a mixture prior model for δg is defined with point mass at 0 and a parametric
distribution for the alternative

Fully Bayesian implementation where the proportion in the null is estimated along
with other parameters has only been recently developed

The choice of the alternative distribution in the mixture can be influential
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2 – Mixture models for Differential expression

Model for differential gene expression
Data is log gene expression xgci

g = 1, ..., m (gene)
c = 1, 2 (experimental condition)
i = 1, ..., n (replicate measure)

First level
xg1i|µg, δg, τg ∼ N(µg −

1

2
δg, τ

−1
g )

xg2i|µg, δg, τg ∼ N(µg +
1

2
δg, τ

−1
g )

rewrite this as
x̄gc|µg, δg, τgc ∼ N(µg ∓

1

2
δg, (nτg)

−1)

Sgc|τgc ∼ Gam(
1

2
(n − 1),

1

2
(n − 1)τg)

where x̄gc is mean, Sgc is sum of squares 1
(n−1)

∑

i(xgci − x̄gc.)2.

Define dg = x̄g2. − x̄g1.
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2 – Mixture models for Differential expression

Second level
Exchangeable prior for gene precision

τg ∼ Gam(α, β)

Mixture prior for log ratios

δg|zg, λ, η ∼















Gam(−)(λ−, η−) zg = −1

δ(0) zg = 0

Gam(λ+, η+) zg = 1

where Gam(−)(x|λ−, η−) = Gam(−x|λ−, η−).

Each component characterizes log ratios for groups of genes:
zg = 0 for non-differentially expressed genes (null hypothesis)
zg = 1,−1 for over and under expressed genes
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2 – Mixture models for Differential expression

Third/fourth levels
zg = −1, 0, 1 have prior
P(zg = j|πj) = πj .
πj (mixture weights) have
Dirichlet prior.
α, β, λ, η are given Gamma pri-
ors.

MCMC Implementation
Joint update for the δg and zg for
each feature g.

δg τg

d
(obs)
g S

(obs)
g

λ, η zg α, β

π
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2 – Mixture models for Differential expression

Performance of mixture model Lewin, Bochkina & SR, in preparation

Using realistic simulated data (noise distribution from real data) where differential
expression follows a variety of distributions (not those used in the mixture model),
we found:

• 2-sided Gamma alternative is flexible and seems to adapt to a range of shapes
of simulated alternatives. How can we check this?

• Posterior allocation probabilities of the fitted mixture: Prob(zg = i| data) can be
used to build classification rules (not necessary Bayes rule), i.e. to define a set
Srej of genes classified in the alternative

• Good estimates of False Discovery Rate can be obtained for any rule:

1/#Srej

∑

g∈Srej

Prob(zg = 0|data)
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2 – Mixture models for Differential expression

The 3 cases differ in the
shape of the alternative (a
mixture of uniform and nor-
mal) and values of π0:
Case 1: π0 = 0.8, alter-
native close to normal
Case 2: π0 = 0.8, alter-
native close to uniform
Case 4: π0 = 0.9, asym-
metric alternative
Bottom plots: Estimated
and ‘true’ FDR and FNR
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Model checking

Model checking via mixed predictive p-values
Aims of model checking
1. Get some idea of how well a given model fits the data, without considering

alternative models −→ Bayesian predictive p-values

2. Want measure of model fit for each feature so we can use the ensemble to
judge model fit/look for outliers −→ p-value for each feature

Prediction Scheme

Cross-validation: For each feature, take data out, predict data from model fit to rest
of data. Not practical here.

Posterior predictive distribution: Predict data for each feature simultaneously (no
data removed). Conservative.

Mixed prediction: In hierarchical model, predict new intermediate level parameters
before predicting new data. Much less conservative. (Gelman, Meng and Stern,
1996; Marshall and Spiegelhalter, 2003). Use in gene expression models (Lewin et
al, 2006).
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Model checking

Choice of parameters to predict
Differences dg are dependent on 3 sets of gene specific parameters:

δg, τg and zg .

Choice of what quantities to predict to implement mixed predictive checks:

δg : yes - these have the most influence on the data

τg : no - find results similar whether or not these are predicted

zg : no - want to look at separate mixture components

Mixed Prediction for Log ratios

δpred
g |zg, λ, η ∼ Hzg

(λ, η)(H = parametric form of the mixture component)

dmixpred
g ∼ N

(

δpred
g ,

(nτg

2

)−1
)

Compute νgj ≡ P(dmixpred
g > dobs

g |xobs, zg = j)

Isaac Newton- December 2006 -23-



Model checking

Graphical representation
of predictive schemes:
the mixed predictive
dmix−pred

g does not
condition on δg

the post predictive
dpost−pred

g conditions
on δg and is very conser-
vative

π

zgλ, ηα, β

τg δg δ
(pred)
g

d
(obs)
g

d
(post−pred)
g d

(mix−pred)
g

Figure 1: Model (solid), prediction (dashed)
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Model checking

Note we do not expect approxi-
mately uniform νgj p-values for
misclassified genes.
⇒ Useful to restrict the plots of
νgj to genes with high posterior
allocation, e.g.
pr(zg = j|xobs) > 0.5

On the RHS, typical predictive
plots when the simulated and
fitted mixture models are the
same
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Model checking

Illustration on gene expression data set

Experiment: 6 knock-out (knock-out gene involved in insulin resistance) and 5
wildtype mice.

Processed using MAS5.0 software

Mixture models:

1. δg ∼ π0δ0 + π+1Unif(0,3) + π−1Unif(-3,0)

2. δg ∼ π0δ0 + π+1Gam+(λ+, η+) + π−1Gam−(λ−, η−)

3. δg ∼ π0N(0, τε) + π+1Gam+(λ+, η+) + π−1Gam−(λ−, η−)

These 3 mixture models lead to different results for classification of differentially
expressed genes:

Model 1: π0 = 0.96 Model 2: π0 = 0.68 Model 3: π0 = 0.99
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Model checking

Model 1: Mixture of point mass and Uniform:
δg ∼ π0δ0 + π+1U(0,3) + π−1U(-3,0).
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Excess of extreme values in the null, very skewed distribution in the outer
components ⇒ Alternative has too much weight on extreme values, bad fit
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Model checking

Model 2: Mixture of point mass and gammas:
δg ∼ π0δ0 + π+1Gam+(λ+, η+) + π−1Gam−(λ−, η−)
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Null component better, still some excess of extreme p-values. Deficit of small νg,−1

and large νg,1 due to overlap between mixture components or too narrow null?
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Model checking

Model 3: Mixture with ’nugget null’ and gammas:
δg ∼ π0N(0, τ−1

ε ) + π+1Gam+(λ+, η+) + π−1Gam−(λ−, η−)
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Better fit! Few genes with high post prob so more difficult to judge the histograms in
the outer components.
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Model checking

Mixed predictive checks

• Promising tool to explore different aspects of model specification

• For mixture priors, useful to condition on the component allocation. But some
arbitrariness in choice of cut-off on pr(zg = j|xobs)

• More work is needed to investigate patterns of departure from uniformity
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Synthesising gene lists

Synthesising lists of differentially expressed features in related
experiments Blangiardo & SR, 2006

• System biology investigations are often interested in the comparison of two or
more similar experiments .

e.g. effect of a knock out gene on several tissues or species

• The aim is to find common denominators between these experiments

i.e. a parsimonious list of features (e.g. genes, biological processes) for which
there is strong evidence that the listed features are commonly perturbed in all
the experiments

• Joint re-analysis of all experiments not always possible and time consuming,

⇒ Consider ranked list of features for each experiments

Define intersections of the lists and assess the strength of association

Isaac Newton- December 2006 -32-



Synthesising gene lists

Suppose we have two experiments, each reporting a measure of strength of
evidence of differential expression on a probability scale (e.g. p-value) :

Experiment A Experiment B

Small p value =⇒ MOST ‘differentially expressed’ pA1 pB1

pA2 pB2

. . . . . .

p value nearer 1 =⇒ NOT ‘differentially expressed’ pAn pBn

• Consider sequence of cut offs q on the p-values

• Count the number of differentially expressed genes in common

• Compute sequence of Ratios: Observed in common to Expected in common
under independence of the lists
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Synthesising gene lists

Bayesian model

For each probability threshold q, starting from the 2 × 2 table, we specify a
multinomial distribution for the vector of joint frequencies Multi(O | θ, n)

Exp B

DE DE

Exp A DE O11(q) O1+(q) − O11(q) O1+(q)

DE O+1(q) − O11(q) n − O+1(q) − O1+(q) + O11(q) n − O1+(q)

O+1(q) n − O+1(q) n

The vector of parameters θ is given a Dirichlet(0.25,0.25,0.25,0.25) prior, so that the
posterior distribution of θ | O, n is again Dirichlet.

The quantity of interest is the ratio of the probability that a gene is in common, to the
probability that a gene is in common by chance:

R(q) =
θO11(q)

θO1+ × θO+1

Compute Median and 95% Credibility intervals for R(q) | O, n for each threshold
q.
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Synthesising gene lists

Ratios R(q) and Credibility intervals

3 simulated cases. Average results of 50 repetitions

__
___

______
_______________________________

________________________________________________________

_
_________________________________________________________________________________________________

Independent

P value

R
0

1
2

3

0.03 0.23 0.43 0.63 0.83

_
_
__________________________________________________________________________________________________

_
_
_
_________________________________________________________________________________________________

Small Noise

P value

R
0

1
2

3

0.01 0.21 0.41 0.61 0.81

___________________________________________________________________________________________________

_
_

_
_
_
_
_____________________________________________________________________________________________

Large Noise

P value

R
0

1
2

3

0.02 0.22 0.42 0.62 0.82
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Synthesising gene lists

Decision rules

Typically, many Credibility Intervals exclude 1

How to select useful thresholds q and associated lists O11(q) ?

Different ’utilities’:

1. Parsimonious list (small q) giving the least false positive, i.e. genes wrongly
declared to be commonly perturbed

OR

2. Larger list that achieves a balance between false positives and false negatives?
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Synthesising gene lists

Parsimonious list: consider

qmax = arg max{Median(R(q) | O, n)}

over the set of values of q for which
CI95(q) excludes 1.

Balanced list: consider

q2 = max{q ; Median(R(q) | O, n) ≥ 2

and CI95(q) excludes 1}

q2 is the largest threshold where the num-
ber of genes called in common at least
doubles the number of genes in common
under independence

0.
0
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0.
4

0.
6

FDR and FNR

Pvalue

0.2 0.3 0.4 0.7 0.8 0.9 1qmax q2 qmin

FDR

FNR

50
0
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00
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00

20
00

Total Misclassification Error

Pvalue

0.2 0.3 0.4 0.7 0.8 0.9 1qmax q2 qmin

FP + FN
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Synthesising gene lists

In extensive simulation studies, we found

– qmax to be highly specific but conservative

– q2 to be close to report lists with minimum global misclassification errors

For example, for 2 lists of 3000 genes generated so that

– There are 1000 DE genes for Experiment A and 800 DE genes for Experiment B

– 700 genes are truly in common

Joint Bayesian Model

Small noise q R(q) 95%CI O11 FP FN Minimum error

qmax 0.01 2.88 2.76-3.02 464 3 241

q2 0.08 2.01 1.94-2.09 588 41 153 192

Larger noise

qmax 0.01 4.13 3.83-4.46 187 2 515

q2 0.09 2.02 1.91-2.13 348 39 391 428
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Synthesising gene lists

Case study: Effect of High Fat Diet vs Normal Fat Diet on gene
expression in 2 tissues: fat and muscle in mice

Data from Diabetes Genome Anatomy project.

3 replicate array for each tissue and each condition

List of p-values obtained separately for each tissue by Cyber-T

Aim: investigate common perturbation of biochemical processes induced by
HFD in the 2 tissues

Joint Bayesian Model

Rules q R(q) O11 O1+ O+1 95%CI

max 0.01 3.76 20 1482 44 2.72-4.68

2 0.07 2.04 226 3059 452 1.90-2.21
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Synthesising gene lists
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Synthesising gene lists

Results from the synthesis of High Fat diet in two tissues

GO Annotation for 226 genes
found by rule q2:

• 122 involved in biological
processes categories

• 124 in molecular function
categories

• 127 in cellular compo-
nents categories

172 in KEGG pathways

Cellular Components: “Mitochondria”, or-
ganelles where oxidative reactions take place
(responsible for ATP synthesis).
Molecular Functions: “Oxidative Reaction”
−→ confirms an involvement of oxidation and
energy production related to the switch of diet
in more than one tissue
−→ Both are linked to chronic obesity and di-
abetes in literature.
Coherent results with KEGG pathways:
“Cytokine-Cytokine receptor interaction”, reg-
ulates extra cellular signals transmitted to the
nucleus of the cell, e.g. inflammation as a re-
sult of an HFD.
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Conclusion

Concluding remarks

Integrated gene expression analysis via Bayesian modelling

• Uses the natural hierarchical structure of the data

• Is able to effectively synthesise information at many levels

e.g. from low level probe-based models to models for combining summary
information from different experiments

• Provide realistic quantification of uncertainty

−→ Posterior distributions can be exploited for inference with no or few
replicates

−→ Interesting questions concerning the choice of decision rules

• Model checking becomes integral part of the modelling process

• Model based classification, e.g. through mixtures, provides interpretable output
and a structure to deal with multiplicity
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Conclusion

Implementation is challenging

• Convergence issues in very high dimensional space

• Adaptive methods seem promising and warrant further exploration

• Parallelising is important

Beyond the benefits in gene expression analysis, useful framework for investigating
general questions of

– interplay between style of modelling and level of information

– decision rules to exploit the rich output

– benefits of fully integrated analysis versus ‘piecemeal’ analysis
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