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Introduction

Specificity of the context of application

• Many more covariates (thousands of genes) than samples (∼ 100): large p,

small n paradigm.

• Gene prediction: building molecular profiles based on gene expression which

can characterise different phenotypes (e.g. clinical outcomes).

• Many such questions can be framed in a regression set-up, with the focus on

variable selection.

• Here: binary classification → probit/logistic regression

• Sparseness: Out of the thousands of genes usually only a few are expected to

be related to the response.

• Complex dependence structure between genes linked to underlying biological

pathways and networks.
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Introduction

Difficulties

• In the “large p, small n” context, regression is an ill-conditioned problem, with a

multi-modal posterior distribution over the model space, i.e. many alternative

models having similar explanatory power

• The model space becomes huge, of size 2p (when no interactions included) and

full exploration is unfeasible

• → Use of MCMC methods as stochastic search algorithms
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Motivation for Bayesian variable selection

BVS model with indicator variable γi =







1 variable i is included

0 variable i is excluded

Shape of prior to encourage sparsity:

• spike in zero (variable exclusion),

• heavy tails (variable inclusion).

beta
−4 2 0 2 4

Examples:

• Normal mixture prior

(George and McCulloch 1997):

βi|γi ∼ (1−γi)N(0, σ2v0γi
)+γiN(0, σ2v1γi

)

• Conditional model

(Holmes and Held 2006):

βi only defined and estimated if γi = 1
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Motivation for Bayesian variable selection

• A prior on the model space can be specified via a prior p(γ).

Here: Binomal prior p(γ) =
∏p

i=1 πγi

i (1 − πi)
1−γi

• This approach was taken by George and McCulloch (1993, 1997) and many

subsequent authors (Clyde, 1999; Brown et al 1998, 2002, Kohn et al 2001,

Jasra et al 2005, Cui and George 2006, ...).

• Much of the work on BVS has been done in the linear/probit regression context,

where typically, the choice of a conjugate prior for the regression vector β is

used, allowing β to be integrated out.

• In other cases (logistic regression), it is important to update the covariate

indicator and the regression coefficients jointly as these are typically strongly

correlated, especially when the covariates X are non-orthogonal.

• In the binary case, auxiliary variable representation is called upon: either for the

probit (Albert and Chib 1993, Lee et al 2003) or the logit link (Holmes and Held

2006)
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Logistic BVS model

Probit regression

(Albert and Chib 1993)

yγj =

{

1 if zγj > 0

0 otherwise

zγj = xγjβγ + ǫj

ǫj ∼ N(0, 1)

βγ ∼ N(bγ , vγ)

γ ∼ p(γ)

Logistic regression

(Holmes and Held 2006)

yγj =

{

1 if zγj > 0

0 otherwise

zγj = xγjβγ + ǫj

ǫj ∼ N(0, λj)

λj = (2φj)
2

φj ∼ KS, independently

βγ ∼ N(bγ , vγ)

γ ∼ p(γ)

γ subscripts indicate that variable is only defined for those i with γi = 1.

Here, we focus on the logistic regression model because of better interpretability in

terms of odds ratios.
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Logistic BVS model

Benefits of auxiliary variable representation

• The ǫj have a scale mixture of normals form with marginal logistic distribution

(Andrews and Mallows 1974)

• If the prior for βγ is normal, p(βγ) = N(bγ , vγ), so is the posterior:

βγ |zγ , λ ∼ N(Bγ , Vγ)

Bγ = Vγ(v−1
γ bγ + XT

γ λ−1zγ)

Vγ = (v−1
γ + XT

γ λ−1Xγ)−1

λ−1 = diag(λ−1
1 , ..., λ−1

n ).

Note that Vγ depends on λ, so needs to be recomputed at every sweep.

Typically, the hyper-parameters for the prior for βγ are bγ = 0 and either

– independence prior covariance vγ = c2Ipγ
(our choice with c2 = 5)

– or g-prior covariance vγ = c2(XT
γ Xγ)−1 (Bottolo and Richardson 2007)
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MCMC sampling

MCMC sampler for logistic BVS

• Update {z, λ} jointly given {β, γ}:

p(z, λ|βγ , Xγ , y) = p(λ|z, βγ , Xγ)p(z|βγ , Xγ , y)

(the second distribution on the RHS is a truncated logistic)

• Update {β, γ} jointly given {z, λ} with joint proposal

p(γ∗, β∗) = p(β∗|γ∗, z, λ, X)q(γ∗) = N(Bγ∗ , Vγ∗)q(γ∗)

This is done via a Metropolis-Hastings step to update the current covariate set

(defined by γ), with a subsequent update to β. The acceptance probability of

the joint move is

α = min

{

1,
|Vγ∗ |1/2|vγ |

1/2

|Vγ |1/2|vγ∗ |1/2

exp(0.5B′

γ∗V −1
γ∗ Bγ∗)

exp(0.5B′

γV −1
γ Bγ)

p(γ∗)q(γ|γ∗)

p(γ)q(γ∗|γ)

}

• Note that α does not involve βγ or β∗

γ , but only its posterior mean Bγ and

variance Vγ → efficient updates
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MCMC sampling

MCMC schemes for updating the covariate set indicator γ

• Vanilla sampler (add/delete move) (Holmes and Held, 2006)

Select indicator variable γk at random and change state (0 → 1 or 1 → 0):

p(γ∗)q(γ|γ∗)

p(γ)q(γ∗|γ)
=

q(γ|γ∗)
∏p

i=1 π
γ∗

i

i (1 − πi)
1−γ∗

i

q(γ∗|γ)
∏p

i=1 πγi

i (1 − πi)1−γi
=

{

πk

1−πk
if γk = 0

1−πk

πk
if γk = 1

.

For large p, and dependent X covariates proposing to update one indicator

variable at a time leads to very slow mixing (see comparison later).

• Other extreme: Propose to update the entire indicator vector, for example using

a Gibbs sampling proposal, will be computationally very expensive (Lee 2003)

• Block update using blocks of (partially) correlated variables

Idea: If we can assume sparse dependence structure in X , only those genes

which are (partially) correlated need to be updated together.

→Define neighbours for each gene based on correlation or partial correlation
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MCMC sampling

Block (or neighbourhood) proposal scheme

1. Select a gene i randomly.

2. Propose to update neighbouring genes k ∈ N(i) together with selected gene.

3. Propose new values γ∗

k , k ∈ {i, N(i)}, for these genes by drawing from their

univariate conditional distributions:

p(γ∗
k |γ−k, z, X, λ) ∝ p(z|γ, X, λ)p(γ) (with γ = (γ∗

k , γ−k))

= N(0, (λ−1 − λ−1XγVγX ′
γλ−1)−1)

p
∏

i=1

πγi(1 − π)1−γi

Normalising constant unknown → compute for both γk = 1 and γk = 0.
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MCMC sampling

How to determine blocks, i.e. estimate neighbourhood struc ture

1. Correlation (Corr) or partial correlation (Pcor) matrix: Estimate either using a

shrinkage estimator (R library corpcor, Schäfer and Strimmer 2005).

2. Threshold C : Minimum size of absolute pairwise (partial) correlations for two

variables to be declared neighbours. Here, the threshold is set to the C th

percentile of all absolute (partial) correlations (Corr < C >, Pcor < C >).

Need to balance the improvement in mixing with the extra computational burden of

sampling a large number of indicators

Comparisons of block samplers with:

• AD - add/delete sampler

• Full - full Gibbs sampler updating every variable by sampling from its full

conditional distribution
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Simulation examples A and B

Example A (25 replications)

• Similar to example 4.2 in George and McCulloch (1993)

• p = 100 × 5 variables and n = 100 samples

• Variables are correlated by blocks of size 100

• p∗ = 5 variables are related to response y (true model) via logistic link:

β = (2, 2, 2, 2, 2, 0, ..., 0)

Example B (25 replications)

• Sample p genes from real gene expression data (Schwartz et al. 2002)

• p = 500 variables and n = 104 samples

• p∗ = 5 variables are related to response y (true model) via logistic link:

β = (2, 2, 2, 2, 2, 0, ..., 0)

– For both examples, prior probability for γi = 1 : π = p∗

p = 0.01

– Computing specs: Matlab, dual-core PC: CPUs @ 2.40GHz, 3.5GB RAM
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Simulation examples A and B

Correlation structure - Example A

• Add/delete and block samplers:

T = 200, 000, B = 50, 000

• Full Gibbs:

T = 90, 000, B = 10, 000

Correlation structure - Example B

• Add/delete and block samplers:

T = 250, 000, B = 50, 000

• Full Gibbs:

T = 110, 000, B = 10, 000
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Simulation results

Simulation example A

Trace plots of γ vector show improved mixing for block update (results for one

replicate)

Add/delete sampler Block (Pcor, C = 90%) Full Gibbs
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Simulation results

Relative median effective sample sizes (ESS∗/t) and CPU times t for various

choices of block size threshold C (results for two replicates).
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• ESS∗ = #I
p

× mediani∈I(ESS(γi)) where I := {i : ||γi|| > 0}

• Effective sample size ESS(γi) = T−B
fi

: Run length adjusted for integrated auto-correlation

fi = 1 + 2
∑∞

κ=1
ρκ(γi) (with ρκ(γi) denoting auto-correlation of γi at lag κ)
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Simulation results

Posterior inclusion frequencies (median and IQR) for variables 1, ..., 10 averaged

over 25 replicates (after burn-in)

After 1,000 iterations

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Variables

p(
γ i=1

|y
,X

)

 

 

Block (Pcor90)
Add/delete
Simulated model

After 10,000 iterations

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Variables

p(
γ i=1

|y
,X

)

 

 

Block (Pcor90)
Add/delete
Simulated model

After 50,000 iterations
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After 150,000 iterations
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Simulation results

Simulation example B

Trace plots of γ vector show improved mixing for block update (results for one run)

Add/delete sampler Block (Pcor, C = 90%) Full Gibbs

Lifestat Munich- March 12, 2008 -17-



Simulation results

Relative median effective sample sizes (ESS∗/t) and CPU times t for various

choices of block size threshold C (results for two replicates).
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Simulation results

Posterior inclusion frequencies (median and IQR) for variables 1, ..., 10 averaged

over 25 replicates (after burn-in)

After 1,000 iterations
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After 10,000 iterations
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After 200,000 iterations
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Parallel tempering on ovarian cancer data

Combine with other strategies to improve mixing

E.g. Metropolis-coupled MCMC (parallel tempering): Run parallel chains at

different temperatures τ to improve mixing and propose swap
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Parallel tempering on ovarian cancer data

Parallel tempering implementation

• Tempered “likelihood” pτ (z|λ, βγ ,Xγ) = Nz(Xγβγ , τλ)

• Joint posterior distribution

pτ (βγ , γ, z, λ|Xγ , y) ∝ pτ (βγ , γ, z, λ, y|Xγ)

= p(y|z)pτ (z|λ, βγ ,Xγ)p(βγ |γ)p(γ)p(λ)

Swap the states of two parallel chains of temperatures τm and τl:

Exchange (βγ , γ, λ, z) with acceptance probability

α = min

{

1,
pm(z(l)|λ(l), β

(l)
γ , X

(l)
γ )pl(z

(m)|λ(m), β
(m)
γ , X

(m)
γ )

pm(z(m)|λ(m), β
(m)
γ , X

(m)
γ )pl(z(l)|λ(l), β

(l)
γ , X

(l)
γ )

}

= min

{

1, exp

(

(
1

τm
−

1

τl
)

(

−
1

2
(zl − Xγlβγl)

′λ−1
l (zl − Xγlβγl)+

1

2
(zm − Xγmβγm)′λ−1

m (zm − Xγmβγm)

))}
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Parallel tempering on ovarian cancer data

Data set

• Ovarian cancer gene expression data with n = 104 samples and p = 4000

variables (after univariate filtering) (Schwartz et al. 2002).

• Binary classification between intrinsically chemotherapy-resistant tumours and

more responsive histologies.

• Block structure: partial correlation matrix and threshold C = 0.99

• In a previous resampling study, five genes had consistently been selected by

lasso and other multivariate methods (for more than 50% of all

training/validation splits) → “candidate genes”

• Hyper-prior parameters in BVS model: π = 5/4000, c2 = 5

MCMC

• T = 1, 100, 000, B = 100, 000

• Five parallel chains with geometric temperature ladder {τ0, τ1, τ2, τ3, τ4}

with τ = 1.2: Only propose to swap neighbouring chains.

Run un-coupled for 50,000 iterations before starting swaps
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Parallel tempering on ovarian cancer data

Deviance trace shows convergence rate and when chain gets stuck in local optima.
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Parallel tempering on ovarian cancer data

Trace plots for γ: Mixing improves dramatically when using blocks/parallel chains.
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Parallel tempering on ovarian cancer data

Diagnostic measures for mixing of Markov chains

MCMC sampler CPU time ESS∗ ESS∗/t #I♯ # can- # not can-

t (sec) (to A/D) didates† didates

Add/delete 18,906 8 1.00 198 1 23

Blocks 81,350 3,793 114.4 2856 3 6

Parallel tempering

with add/delete 103,563 19,900 471.4 1091 4 15

with blocks 396,046 41,985 260.1 3752 4 5

♯I = {i : ||γi|| > 0}

†How many of the five genes consistently selected by lasso and other multivariate methods in

resampling study are recovered by BVS, if cut-off at ratio of posterior to prior > 10 (i.e.

P (γi = 1|Z, X, W ) > 0.0125)?
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Conclusions

MCMC algorithms for variable selection

• Tempering with parallel chains is key to escape local modes

– Important to allow bold moves, like “exchange moves”, but need to think

carefully how to maximise their chance of being accepted (Evolutionary

Monte Carlo, e.g. Bottolo and Richardson 2007, Jasra et al. 2005 etc.)

– Ideal for exploiting parallel processing resources

• When there is dependence amongst the covariates, mixing can be improved by

using block updating based on thresholding the (partial) correlations.

• We have explored many possible variants in terms of:

– how to determine blocks (Pcor, Corr, random blocks)

– size of blocks (choice of C)/ “block depth” (first-, second-,... order

neighbours)

– within block proposal: using a univariate Gibbs proposal, but for strongly

correlated variables, could be useful to have additional moves proposing to

update pair or triplets of variables using multivariate Gibbs
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Conclusions

• Sensitivity analysis

– choice of c2 in prior covariance matrix v = c2In of β

– choice of π (prior prob p(γi) = 1)

• Choice of prior distributions:

– for βγ : independence prior, g-prior

– for γ: binomial, beta-binomial

• Including some adaptivity is useful

– Choice of temperature ladder

– Investigate how to adapt number of models evaluated at each GS iteration

• Binary regression is harder to benchmark than linear regression. Not all

variables are needed to obtain good 0/1 discrimination

→ perform out of samples prediction to evaluate the algorithms

• Care is needed before interpreting results in the “large p, small n” case.

Effective sample sizes are small!
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