
Web-based Supplementary Materials for

“Tail posterior probability for inference in

pairwise and multiclass gene expression data”

by N.Bochkina and S.Richardson

Web Appendix A

Microarray Experiment

The data considered in this paper derives from the sets of experiments on

the H2Kb muscle cell line of mouse (Tatoud et al., 2006), as a part of BAIR

project (http://www.bair.org.uk), studying reaction of cells to insulin to ad-

vance further in understanding the development of diabetes. The cells were

treated with insulin and metformin, an insulin-replacement drug, and ob-

served after the treatment at two time points, 2 and 12 hours. For compari-

son, non-treated cells were grown and collected at the time of treatment (0

hours) and at 2 and 12 hours. This experiment has 3 biological replicates

for each of the seven conditions. RNA from each of the 21 samples was hy-

bridised on an Affymetrix MOE430A chip (a single channel array), making

a total of 21 microarrays, with 22690 genes per chip. The aim of the experi-

ment was to find genes changing their expression in the cells due to treatment

by insulin or metformin. The data we use below was background-corrected

and the gene expression index was calculated using RMA software (Irizarry
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et al., 2003) implemented in R (http://www.r-project.org) with intensity-

dependent loess normalisation which results in data being transformed on

the log2 scale. For biological interpretation of the results in this and the

previous sections see Tatoud et al. (2006).

Web Appendix B

Sensitivity to the prior distribution of b.

In this section we discuss sensitivity to the choice of prior for the hyperpa-

rameter b, the scale parameter of the inverse gamma prior distribution of the

variances σ−2
g ∼ Γ(a, b) in model (1).

To choose the prior family for b, we follow suggestions in Gelman (2006).

There is no direct equivalence between the random effect model considered

by Gelman (2006), and the hierarchical model for the variance σ2
g considered

here. The commonality is that in both cases, a non-informative prior distri-

bution for inverse variance of a random effect model in the former case and

precision parameter b in our case is being sought. Therefore, since Gelman

(2006) recommends a uniform prior on the standard deviation, the equiva-

lent of this for b here is 1/
√

b. Another issue in support of this choice is that

if we consider a non-informative prior for b with singularity at b = 0 (e,g,

f(b) = 1/b), it is easy to show that this will result in improper posterior, also

with singularity at b = 0. Therefore, we want to exclude a small neighbour-

hood of b = 0, i.e. we want to bound 1/b (and thus 1/
√

b) from above. These

arguments lead us to the following prior: 1/
√

b ∼ U [0, u]. Note that this is

equivalent to the Pareto prior on b: f(b) = kǫkb−k−1I(b > ǫ) with parameter

k = 1/2 and ǫ = 1/u2.
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One needs to take care in choosing u. If u is too small, we may exclude

values of b supported by the likelihood, and if u is too large it may lead

to negative “bias” in the posterior estimate of b (see discussion in Gelman,

2006). Therefore, we consider several values of u and compare the resulting

posterior distributions.

To choose a data-driven value of ǫ (and thus of u), we used the following

heuristics. Since b = (a − 1)E(s2
g | a, b), we can choose the lower bound on

b proportional to (a − 1) ming s2
g, with a plug-in value of a. One way is to

plug-in a reasonably small value of a, e.g. a = 2, and another way is to

plug-in an estimate of a based on the distribution f(s2
g | a, b), e.g. a moment

estimator. After obtaining the posterior distribution of b, it is always useful

to check if its density is high around the value 1/u2 which implies that the

chosen value of u was too small.

For the H2Kb data, ming s2
g = 0.00169, and for the simulated data

ming s2
g = 0.00024, and we take u = (ming s2

g)
−1/2, which is uH2Kb = 24.4

for the H2Kb data and usim = 64.5 for the simulated data. To check sen-

sitivity to the choice of u, we also consider other values of u, roughly twice

and half of the selected values.

We applied this hyperprior 1/
√

b ∼ U [0, u] to H2Kb muscle cell data with

u = 14.4, 24.4, 48 and to the simulated data with u = 30, 64.5, 129, together

with the priors for the other parameters for the multiclass model as specified

in Section 5. We compare posterior distributions of b, posterior estimates of

σ2
g and the tail posterior probabilities.

Comparison of the posterior distributions of b on the simulated data shows

that for all prior distributions, the true value of b = 0.05 is well recovered,
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since it is close to the point of maximum of the posterior densities (see Web

Figure 1a). Note that for u = 30 and u = 64.5 the estimated posterior

densities of b coincide. For the H2Kb data, we observe that the posterior

distributions of b for all priors are similar (Web Figure 1b), and for u = 24.4

and u = 48 the estimated posterior densities of b coincide. It is not surprising

that the choice of prior distribution for b does not affect much its posterior

distribution since there are thousands of values of s2
g which contribute to

estimating 2 parameters, a and b.

Comparison of the posterior estimates of σ2
g (Web Figure 2) and of the

tail posterior probabilities (Web Figures 3 and 4) shows very good agree-

ment, as they all lie on the diagonal and the difference between the values

is comparable to MCMC errors of the estimates (the figures of the posterior

probabilities are given only for two comparisons, insulin vs control at 2 and

at 12 hours).

We also checked the sensitivity to other families of prior distributions

for b, such as gamma distributions and folded t distributions considered by

Gelman (2006), and we did not find much difference between the estimates

of σ2
g and the posterior probabilities for both data sets.

Therefore, we conclude that in the considered cases, specifying different

prior distributions for b does not affect much either of the posterior distribu-

tion of b, posterior estimates of σ2
g or the tail posterior probabilities.

Web Appendix C

Calibration of p(δg, δ
(α)
g ) under H0.

In this section we treat p(δg, δ
(α)
g ) as a test statistic in the frequentist sense.
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Figure 1. Posterior distributions of b.

Taking into account that for any x, G(0,−x + y) + G(0,−x − y) is an

increasing function of y > 0, i.e. that G(0,−x + y2) + G(0,−x − y2) >

G(0,−x + y1) + G(0,−x − y1) is equivalent to y2 > y1 > 0, taking x = δ
(α)
g

and y2 = |ȳg| and y1 = δ
(α)
g , we obtain the following:

P{p(δg, δ
(α)
g ) > 0.5 + G(0,−2δ(α)

g ) | H0} =

= P{G(0,−δ(α)
g + ȳg) + G(0,−δ(α)

g − ȳg) >

G(0,−δ(α)
g + δ(α)

g ) + G(0,−δ(α)
g − δ(α)

g ) | H0}

= P{|ȳg| > δ(α)
g | H0} = 2(1 − G(0, δ(α)

g )) = α

by definition of δ
(α)
g . Here we also used the following property of G(x, y):

0.5 = G(0, 0) = G(0, δ
(α)
g − δ

(α)
g ). Since G(0,−2δ

(α)
g ) is small for small values

of α (for example, it is approximately α/22A+1 for w−2
g | s2

gs ∼ Γ(A,Bg)), the
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(f) Sim data,
U(0,64.5) vs
U(0,129)

Figure 2. Posterior estimates of σ2
g .
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(f) Sim data,
U(0,64.5) vs
U(0,129)

Figure 3. Posterior estimates of tail posterior probability, insulin vs control
at 2 hrs.
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(c) H2Kb data,
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(f) Sim data,
U(0,64.5) vs
U(0,129)

Figure 4. Posterior estimates of tail posterior probability, insulin vs control
at 12 hrs.
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tail posterior probability under H0 satisfies

P{p(δg, δ
(α)
g ) > 0.5 | H0} ≈ α.

Web Appendix D

Distribution of p(tg, t
(α)) under H0.

Consider model (1) and prior settings (3) with σ−2
g1 = σ−2

g2 = σ−2
g ∼ Γ(a, b).

Then the posterior distribution of w2
g = m1+m2

m1m2

σ2
g conditioned on hyperpa-

rameters a and b is inverse gamma: w−2
g ∼ Γ(2A, B̃g), A = a+(m1+m2)/2−1,

B̃g = m1m2

m1+m2

Bg and Bg = b + [(m1 − 1)s2
g1 + (m2 − 1)s2

g2]/2. Thus, the tail

posterior probability p(tg, t
(α)) can be rewritten using (7) in the following

way:

p(tg, t
(α)) = P{|tg| > t(α) | ygsr}

=

∫

∞

0

[Φ(tg − ȳgw
−1
g ) + Φ(−tg − ȳgw

−1
g )]fγ(w

−2
g | 2A, B̃g)d(w−2

g )

=

∫

∞

0

[Φ(tg − vgȳg/B̃
1/2
g ) + Φ(−tg − vgȳg/B̃

1/2
g )]fγ(v

2
g | 2A, 1)d(v2

g).

Since the distribution of zg = ȳg

√

A/B̃g under the null hypothesis in the

considered settings is t distribution with 2A degrees of freedom (see, e.g.

Smyth, 2004), the distribution of the tail posterior probability p(tg, t
(α)) is

the same as the distribution of
∫

∞

0

[

Φ
(

−t(α) + z̄g

√

v2
g/A

)

+ Φ
(

−t(α) − z̄g

√

v2
g/A

)]

fγ(v
2
g , A, 1)dv2

g .

Consequently, the integral expression above defines a gene-independent cu-

mulative distribution function F0(x) for p(tg, t
(α)). To evaluate this distribu-

tion, we can either plug-in a sensible estimate of parameter A, or integrate

it out using its posterior distribution.
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Web Appendix E

Comparison of gradients

For larger values of p(tg, t
(α)), its gradient becomes greater than the gradient

of p(δg, 0) at some change point y∗ = y∗(s
2
g). For example, for the considered

microarray data, the gradient of the internal part of the volcano (i.e. of the

curve {min(|ȳg| : pg = p), p} for p ∈ [0.2, 0.9]) is approximately twice as

small for p(tg, t
(α)) compared to the corresponding gradient for the two-sided

p(δg, 0) (Figures 1a and 1b). In general, we show in the theorem below that

in the considered settings with equal variances having inverse gamma prior

distribution, for any fixed value of s2
g, the gradient of p(tg, t

(α)) is smaller for

values of |ȳg| < y∗ than the gradient of the two-sided p-value like selection

rule, thus confirming the behaviour illustrated by the plots. Furthermore,

for the considered data, the values of the tail posterior probability, as well as

of p(δg, 0), corresponding to y∗(s
2
g), are approximately constant for different

values of s2
g.

The next theorem compares the gradients of the tail posterior probability

p(tg, t
(α)) and the two-sided p-value type selection rule 2 max{p(δg, 0), 1 −

p(δg, 0)} − 1 as functions of the observed difference ȳg for the same values of

s2
gs. In the theorem, we drop the indices for convenience.

Theorem 1. For any θ > 0 there exists y∗ = y∗(θ, s
2) > 0:

∀y : y < y∗,

∣

∣

∣

∣

∂(G(−θ, y) + G(−θ,−y))

∂y

∣

∣

∣

∣

<

∣

∣

∣

∣

∂(2G(0, y) − 1)

∂y

∣

∣

∣

∣

;

∀y : y > −y∗,

∣

∣

∣

∣

∂(G(−θ, y) + G(−θ,−y))

∂y

∣

∣

∣

∣

<

∣

∣

∣

∣

∂(2(1 − G(0, y)) − 1)

∂y

∣

∣

∣

∣

.

Below we give a sketch of the proof.
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Proof. (Theorem 1) Due to the asymmetry of the derivatives of G(−θ, y) +

G(−θ,−y) and of 2 max(G(0, y), 1 − G(0, y)) − 1 with respect to y, it is

sufficient to consider only the case y > 0. To prove the threorem, it is

sufficient to show that I(θ, y) < 0 for 0 < y < y∗ where

I(θ, y) =
∂(G(−θ, y) + G(−θ,−y))

∂y
− 2

∂G(0, y)

∂y

=

∫

∞

0

v[ϕ(−θ + yv) − ϕ(θ + yv) − 2ϕ(yv)]f(v2|s2)d(v2).

Note that for θ, z = yv > 0, expression i(θ, z) = ϕ(−θ+z)−ϕ(θ+z)−2ϕ(z)

as a function of z changes its sign from negative to positive at the point

z∗ = θ/2 + log(
√

1 + e−θ2 + 1), which corresponds to the solution with z > 0

of the quadratic equation x2 − 2xeθ2/2 − 1 = 0, x = ezθ.

Therefore, we can represent I(θ, y) as a difference of two positive integrals:

I(θ, y) =

∫

∞

z∗/y

i(θ, yv)vf(v2|s2)d(v2) −
∫ z∗/y

0

(−i(θ, yv))vf(v2|s2)d(v2).

Since limy→0 I(θ, y) = −2ϕ(0) < 0 and limy→∞ I(θ, y) > 0 (due to the length

of the integration interval tending to zero for the second integral and bounded

|i(θ, yv)|), there exists y∗ ∈ (0,∞): for any 0 < y < y∗, I(θ, y) < 0. Thus,

the statement of the theorem is proved.

Web Appendix F

WinBUGS code for fitting Bayesian model for multiclass data

To fit model (12) in WinBUGS, we split data into two parts: y0[g,r]=

yg00r for the log intensity at the baseline (t = 0), and the rest of the data

y[g,c,t,r]= ygctr for gene g = 1, . . . , n, treatment c = 1, . . . , n.cond, time

t = 1, . . . , n.time− 1 and replicate r = 1, . . . , n.repl, which forms a balanced
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array due to equal number of replicates in each condition. Data sets y0[g,r]

and y[g,c,t,r] and parameters n, n.repl, n.cond and n.time need to be

specified in the data file.

With respect to the considered data set, we have n.repl = n.cond =

n.time = 3 and the values of c = 1, 2, 3 correspond to treatments insulin, met-

formin and control respectively, and time points t = 1, 2 correspond to 2 and

12 hours. To simplify this code, we use explicitly that n.time − 1 = 2 split-

ting parameter δgct into two, one for each time point: delta2h[g,c]= δg1c and

delta12h[g,c]= δg2c. The reason for this is that the program for importing a

summary from WinBUGS into R available to us is not very good in importing

three-dimensional arrays. The posterior probabilities ppTailPP[g,c,t] (tail

posterior probability based on the standardised difference), ppFC2[g,c,t]

(posterior probability that |δgct| > log2 2) and ppFC0[g,c,t] (posterior prob-

ability that δgct > 0) calculated for each value of parameter δgct, are split in

the same way, which we mark by adding the name of the time point after

each name of the posterior probability, e.g. ppTailPP.2h[g,c].

Note that we approximate the non-informative prior distribution f(x) = 1

by “just proper” distribution N(0, 104) which allows to use WinBUGS to fit

the model.

model; {

for(g in 1 : n)

{

for(r in 1 : n.repl)

{

for( c in 1 : n.cond)

{

for( t in 1 : (n.time-1))

{
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y[g, c, t, r] ~ dnorm(x[g, c, t], tau[g])

}

}

y0[g, r] ~ dnorm(alpha[g], tau[g])

}

}

# Intermediate level of hierarchy

for( g in 1 : n)

{

for( c in 1 : n.cond )

{

x[g,c,1] <- alpha[g] + gamma[g,1] + delta2h[g,c]

x[g,c,2] <- alpha[g] + gamma[g,2] + delta12h[g,c]

}

}

#-------------------------------

# prior distributions for the parameters

#note that control is condition 3

for(g in 1:n)

{

alpha[g] ~ dnorm(0.0, 0.0001)

gamma[g,1] ~ dnorm(0.0, 0.0001)

gamma[g,2] ~ dnorm(0.0, 0.0001)

delta2h[g,3] <- 0

delta12h[g,3] <- 0

for(c in 1 : (n.cond-1))

{

delta2h[g, c] ~ dnorm(0.0, 0.0001)

delta12h[g, c] ~ dnorm(0.0, 0.0001)

}

# variance

tau[g] ~ dgamma(a, b)

sig2[g] <- 1.0/tau[g]

}
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# prior distributions for the hyperparameters

a ~ dgamma(0.01,0.01)

b ~ dgamma(1,0.01)

# posterior probabilities

for(g in 1:n)

{

for(c in 1 : (n.cond-1))

{

ppTailPP.2h[g,c] <- step(abs(delta2h[g,c]) - 2*sqrt(2*sig2[g]/n.repl))

ppFC2.2h[g,c] <- step(abs(delta2h[g,c]) - 1)

ppFC0.2h[g,c] <- step(delta2h[g,c])

ppTailPP.12h[g,c] <- step(abs(delta12h[g,c]) - 2*sqrt(2*sig2[g]/n.repl))

ppFC2.12h[g,c] <- step(abs(delta12h[g,c]) - 1)

ppFC0.12h[g,c] <- step(delta12h[g,c])

}

}

}
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Figure 5. Histograms of correlation between differences δg11 and δg12 and
correlation between corresponding standardised differences tg11 and tg12 (us-
ing their posterior distributions), H2Kb data.
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