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1. WinBUGS Code

This is the WinBUGS (Spiegelhalter et al., 1999) code for the model for biological

replicates, given by equations (1), (2) and (3) but restricted to one condition s, with the

posterior predictive checks on the gene variances. The constraint β̄gs. = 0 is imposed in

WinBUGS using dummy “data” consisting of zeros (see main paper for details). The

number of genes is n, where i = 1, ..., n labels the gene, j = 1, ..., 3 the array and

k = 1, ..., nk the polynomial in the array effect. The code shown here is for the model

with piece-wise quadratic array effects; it can easily be modified to include a different

functional form. We used version 1.4 of WinBUGS to run this model.

model;
{

###### 1st level: likelihood and posterior predictive p-values
for( i in 1 : n ) {
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for( j in 1 : 3) {
y[i, j] ~ dnorm(x[i, j], tau[i])
ynew[i, j] ~ dnorm(x[i, j], taunew[i])
x[i, j] <- alpha[i] + beta[i, j]

}
s2[i] <- pow(sd(y[i, ]), 2)
s2new[i] <- pow(sd(ynew[i, ]), 2)
pval[i] <- step(s2new[i] - s2[i])

}
###### 1st level: array effects as functions of gene effect
for( i in 1 : n ){

for( j in 1 : 3 ){
for( k in 1 : nk ){

betadum[i,j,k] <- b2[j,k]*pow(alpha[i]-a[j,k],2)
*step(alpha[i]-a[j,k])

}
beta[i,j] <- b00[j] + b01[j]*(alpha[i]-a0) +

b02[j]*pow(alpha[i]-a0,2) + sum(betadum[i,j,])
}

}
###### 2nd level: exchangeable gene variances
for( i in 1 : n ) {

tau[i] <- 1.0/sig2[i]
taunew[i] <- 1.0/sig2new[i]
sig2[i] <- exp(lsig2[i])
sig2new[i] <- exp(lsig2new[i])
lsig2[i] ~ dnorm(mu,etaminus2)
lsig2new[i] ~ dnorm(mu,etaminus2)

}
###### 3rd level: priors
for( i in 1 : n ){

alpha[i] ~ dunif( a0, akplus1)
}
mu ~ dnorm( 0.0,1.0E-3)
etaminus2 ~ dgamma(0.01,0.01)
for( j in 1 : 3 ) {

b00[j] ~ dnorm(0.0,1.0E-1)
b01[j] ~ dnorm(0.0,1.0E-1)
b02[j] ~ dnorm(0.0,1.0E-1)
for( k in 1 : nk ){
b2[j,k] ~ dnorm(0.0,1.0E-1)
a[j,k] ~ dunif( a0, akplus1)
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}
}
###### impose constraints using dummy data zrow
for( i in 1 : n ) {

scr[i] <- sum(beta[i, ])
zrow[i] ~ dnorm( scr[i], 1.0E+6 )

}
}

The gene expression data are called y[i,j] here, and the dummy data all equal to

zero are zrow[i] (where i labels genes, j labels replicates).

2. Supplementary Figures

2.1 Density of data before and after normalisation

Workman et al. (2002) and Bolstad et al. (2003) show that their quantile normali-

sation methods bring the empirical distributions of data on the different arrays closer

together. Figure 1 shows density plots of our data before and after normalisation (ygsr

and ygsr − β̂gsr respectively). Our method also brings the distributions into closer

agreement.

2.2 Sharing of information to estimate gene variances

In our model σ2
gs ∼ logNorm(µs, η

−2
s ). The parameters µs and η2

s are estimated as

part of the model, so information on variability is shared between genes. For a model

with independent variances (a model with µs and η2
s fixed, not estimated in the model)

each variance parameter is estimated using only 3 measurements. With exchangeable

variances information from all genes (12487 × 3 measurements) is shared between all

the genes.

Figure 2 shows the variances found by a model with independent variances and the

one with exchangeable variances. In the exchangeable model the variances are shrunk

towards their mean (on the log scale). The log-Normal prior smooths both low and high
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variances. The amount of shrinkage is more than SAM (Tusher et al., 2001) performs

on this data set.

2.3 Directed acyclic graph for predictive model checks

Figure 3 shows Directed Acyclic Graphs (Lauritzen, 1996) for both the exchangeable

and equal variance models, to illustrate the difference in the calculation of the mixed

and posterior predictive p-values. The index s for condition is suppressed here. Model

parameters are shown as nodes joined by arrows indicating the conditional dependence

properties. In Figure 3(a), for example, if αg, βgr and σg are known the distribution

of ygr is known. Conditional on {αg, βgr, σg}, ygr is independent of {µ, τ}. Rectangles

represent data, circles represent stochastic parameters. Double arrows indicate that

one quantity is a deterministic function of another (for example S2
g is a function of ygr).

The posterior predictive checks only require new data points {y(pred)
gr

′
} to be pre-

dicted. For the mixed predictive checks, new variance parameters {σ2 (pred)
g } are first

predicted for each gene and then new data points {y(pred)
gr } are predicted based on the

predicted variance parameters.
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Figure 1. Data from 2 sets of 3 arrays, before and after normalisation. The non-linear
normalisation (using array effects which are cubic functions of gene effect) brings the
empirical distributions of data on the different arrays together.
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Figure 2. Raw (independent) and smoothed (exchangeable) variances for the wildtype
mouse fat data. Both calculations used the same non-linear array effect. The smoothed
(exchangeable) variances are shrunk towards the mean.
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Figure 3. Directed acyclic graphs for the model for biological replicates, with addi-
tional parameters used in the calculation of mixed and posterior predictive p-values.
(a) Exchangeable variances, (b) Equal variances.
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Response to external 
stimulus
(O=12, E=4.7)

Response to biotic 
stimulus
(O=14, E=6.9)

Response to stimulus

Physiological process

Organismal movement

Biological process

Response to external 
biotic stimulus *

Inflammatory response
(O=4, E=1.2)

Immune response
(O=9, E=4.5)

Response to wounding
(O=6, E=1.8)

Response to stress
(O=12, E=5.9)

Defense response
(O=11, E=5.8)

Response to pest, 
pathogen or parasite
(O=8, E=2.6)

All GO ancestors of 
Inflammatory response

Numbers in brackets indicate observed (O) and expected (E) numbers 
of genes in the query list (those most differentially expressed)
annotated to the term. Expected numbers are calculated by multiplying 
the percentage of annotations in the reference group with the number 
of genes in the query group.

* This term was not accessed by the FatiGO website.

Relations between GO terms were found using the QuickGO website:
http://www.ebi.ac.uk/ego/


