Program

Friday

Session 1

1    14.10    Mats Rudemo
Spots shape modelling and saturated pixels in microarrays.

2    14.40    Chris Glasbey
Image analysis, normalisation and gene interaction modelling.

3    15.10    Phil Brain
A non-parametric variance-stabilising transformation for analysing micro-array data.        

Session 2

4    16.00    Ernst Wit
High dimensional analyses of gene expression data.

5    16.30    Dave Stephens    
Clustering of Anopheles gene expression profiles.

6    17.00    Chris Holmes
Detecting gene-gene interactions in microarray data using probabilistic rule sets

Saturday

Session 3

7    09.00    Rafael Irizarry
Sequence Based Background Model for Affymetrix Arrays.

8    09.30    Wei Pan
On the use of permutation in detecting differential gene expression.

9    10.00    Anne-Mette Hein
Bayesian Hierarchical models for analysing Affymetrix gene expression arrays using probe level data.

10   10.20    Oliver Hartmann
Quality control for Affymetrix GeneChips: What MM’s are good for.

Session 4

11    11.10    Michael Newton
Differential expression analysis using hierarchical mixture models.

12    11.40    Alex Lewin
Bayesian hierarchical modelling of differential gene expression.

13    12.00    Annibale Biggeri
A Hierarchical Bayesian model to study temperature-dependent variation of sequence-specific hybridization to cDNA Microarray.

14    12.20    Renée Menezes
Hierarchical modelling to handle heteroscedasticity in microarray data.

Session 5

15    14.00    Geoff McLachlan
Classification of tissue samples on the basis of microarray gene-expression data.

16    14.30     Peter Green and Graeme Ambler
Bayesian Two-way clustering for gene expression data.

17    15.00    Bani Mallick
Bayesian classification of tumors using gene expression data.
    
18    15.20    Jelle Goeman    
Prediction with high-dimensional data using a model-based approach to dimension reduction.

Session 6

19    16.10    Mike West
Statistical trees and networks in clinical expression studies.
            
20    16.40    Giovanni Parmigiani
Cross-study validation and combined analysis of Molecular Classification data.

21    17.10    Phil Brown
Assessing differential gene expression using two-component microarray mixture models.

22    17.30    Colin Campbell
On the sample complexity of microarray data.

Sunday               

Session 7

23    09.00    Philippe Broët
Investigating genomic alterations from comparative genomic hybridization chip experiment using prior biological knowledge.    

24    09.30    Rolf Sundberg
Statistical methodology in case control 5’-nuclease assays for identification of differentially expressed genes.

25    09.50    Hans Van Houwelingen
Latent class analysis for Genomic Micro-arrays.

Session 8

26    10.40    Richard Simon
Design issues for studies using DNA Microarrays.

27    11.10    David Hoyle
Phylogenetic reconstruction from microarray data.
            
28    11.40    Terry Speed
To pool or not to pool: an experience with GeneChips.

Session 9

29    16.45    Marcel Dettling
Supervised clustering of genes

30    17.05    Ramon Diaz-Uriarte
A method for finding molecular signatures from gene expression data.

31    17.25    Yvonne Pittelkow    
Visualization methods for exploring microarray data.        

Posters

Byung Soo Kim
Detecting differentially expressed genes for the colorectal cancer: Combining paired data set with two independent data sets.